

GLAST Sensitivity to Gamma-Ray Bursts and Support for Joint Swift-GLAST Observations

David Band, GSSC

CRESST/GSFC/UMBC

- LAT (<20 MeV to >300 GeV)
 - Onboard trigger, ~15 s latency
 - Ground trigger (sensitivity greater because background events filtered out), ~6 hour latency
 - Localization of ~10' about twice a month
 - Small number of counts—sensitive to fluctuations
 - Very dependent on spectrum
 - Spectroscopy
 - Data out to ~65° from LAT axis
- GBM (<10 keV to 30 MeV)
 - Rate triggers: ~200 bursts per year
 - Localization: ~10° on board, few degrees on ground
 - Spectroscopy
 - Data down to horizon

- Spacecraft
 - Swift-like burst telemetry through TDRSS, connected to GCN
 - Scans sky (default). Strong burst will result in autonomous repoint to burst location for 5 hours (except for Earth occultation)
 - TOO on 6 hour timescale (probably much less)
 - Swift-GLAST FOV overlap for ~1/6 of bursts
- Combinations of Swift, GBM, and LAT observations or detections result in:
 - Swift localization leading to LAT afterglow observations
 - LAT localization leading to Swift afterglow observations
 - GBM and LAT broadband spectroscopy of Swift bursts

- \$4M for 40-50 research programs, available starting ~60 days after launch (L > December 14, 2007)
- In Cycle 1 you can propose for:
 - Analysis of data released by GLAST mission
 - Support correlated observations relevant to GLAST
 - Theory related to GLAST (~10% of funds)
 - Data analysis techniques relevant to GLAST data
 - ***Time on NRAO telescopes***
- In Cycle 1 you cannot propose for:
 - Changing GLAST's observing plan (possible in Cycles 2+)
 - Analyzing LAT event data (even if you have access)

- Two phase proposal system
 - Phase 1—Technical proposals submitted through RPS
 - Phase 2—Budgets for approved technical proposals submitted through NSPIRES
- Two types of proposals
 - Regular 1 year research plan. 4 page technical justification
 - Large (legacy)—three year research plan, resubmitted after 1st and 2nd year. 6 page technical justification
- Foreign scientists:
 - Can propose but cannot receive NASA funding (NRAO time, useful for funding by other agencies)
 - US co-Is—funding consistent with the level of effort

- Notice of Intent (NOI) should be submitted through GSSC website by July 13
- GLAST science team members (instrument teams, GSSC):
 - Can receive funding for research using publicly available data
 - Cannot propose a research program based on their access to LAT event data in Cycle 1
- Fellows program will be announced and administered separately

Schedule

Date	Months-L	Event
		Cycle 1
Mid June 2007	-6	Proposal materials on GSSC website
7/13/2007	-5	Notice of Intent due date
9/7/2007	-2	GI Cycle 1 proposal deadline
>12/14/2007	0	LAUNCH!!!
January 2008	1	Results of phase 1 evaluation
	2	Release of GBM SAE Tools
	2	GI Cycle 1 Begins
March 2008	3	Funding decision
		Cycle 2
	6	Effective NRA Release; Release 0.9 of SAE
	8	SAE Workshop—Release of preliminary catalog
	9	GI Cycle 2 Proposal Deadline
	14	GI Cycle 2 Begins; Release 1.0 of SAE

http://glast.gsfc.nasa.gov/ssc

- Burst occurs in LAT (GLAST) and BAT FOVs
 - Swift localizes burst
 - Swift and LAT search for afterglow
 - GLAST provides broadband spectroscopy
 - Strong burst: no immediate response necessary (LAT repointed autonomously for 5 hours)
 - Weak burst: consider LAT TOO (but LAT scans position); response time is <6 hours
- Burst occurs in BAT but not LAT FOV
 - Swift localizes burst
 - Swift and LAT search for afterglow
 - GBM (GLAST) may provide 10 keV-30 MeV spectroscopy
 - Consider LAT TOO (but LAT scans position); response time is
 <6 hours

- Burst triggers LAT (GLAST) but not in BAT FOV
 - GLAST provides broadband spectroscopy
 - LAT and possible Swift afterglow searches
 - Strong burst: no immediate GLAST response necessary (LAT repointed autonomously for 5 hours)
 - Weak burst: consider LAT TOO (but LAT scans position); response time is <6 hours
 - GLAST localization may suffice for XRT TOO followup
 - Onboard GLAST position available within ~15 s
 - Ground GLAST position available within ~6 hours

- Burst triggers GBM (GLAST) but not in BAT FOV
 - GLAST provides broadband (<30 MeV) spectroscopy
 - LAT and possible Swift afterglow searches
 - Strong burst: no immediate GLAST response necessary (LAT repointed autonomously for 5 hours)
 - Weak burst: consider LAT TOO (but LAT scans position); response time is <6 hours
 - GLAST GBM localization is insufficient for Swift followup

- Based on BATSE detection rate, the GBM should detect ~200 bursts per year.
- The LAT detection rate depends on the relatively unknown ~GeV emission. Using BATSE data and extrapolating to LAT band, estimate LAT rates.

- GBM-dependent on burst strength
 - Statistical:
 - [15°, 9°, 1.5°] for [threshold, brightest 40%, brightest 5%]
 - Systematic:
 - Onboard: ~10°
 - On ground: 1-2°
- LAT—depends on number of detected counts (& spectrum)

