

BAT the FUTURE

Scott Barthelmy

GSFC

J.Cummings, E.Fenimore, H.Krimm, C.Markwardt, D.Palmer, A.Parsons, T.Sakamoto, G.Sato, M.Stamatikos, J.Tueller, T.Ukwatta

> Swift Workshop 01-02 May 2007 PSU

Table of Contents:

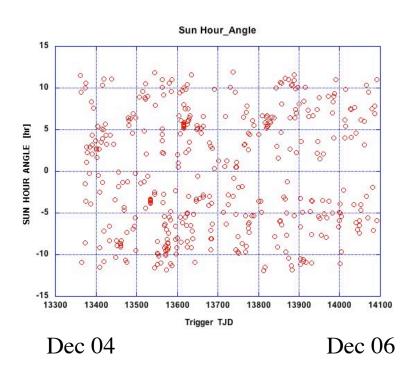
•Brief Status (Noisy Dets; Lack of Bursts)

•GRBs vs Sun Angle

•What can we do with BAT in the Future

Number of Disabled Detectors

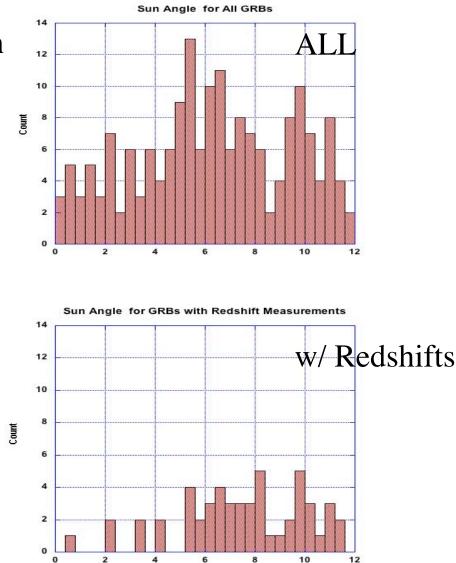
- Number had grown large (7K 2-3 month ago).
- Number is composed of 4 major components:
 - Sporadically noisy (which I periodically reclaim),
 - Permanently noisy (which is hard to tell what the growth rate is; but it is small),
 - Latch-ups (which get periodically reclaimed),
 - SAA-clobbered dets (which get periodically reclaimed).
- Currently, Number is down in the 3K's (10-12%).
 - After total-array scanning/re-enable and after reboot.
- Long-term outlook is good: <25% in 5 more years.



Recent Lack of Bursts

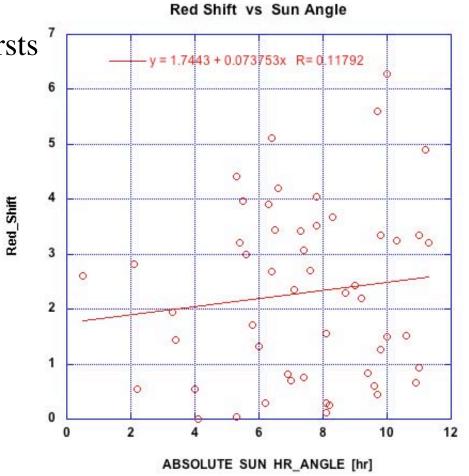
- Last 3-4 months a drop of ~32% in burst rate.
 - Poisson statistics says 4% chance.
- Burst rate is complicated mix of many contributors.
 - Instrumental and astrophysical (variable sources in FOV).
- We have looked at the following:
 - Amount of time off-line: small and no different than other times.
 - Disabled detectors: up & down during this time (like before).
 - Trigger rate has been constant. (7-15 triggers per orbit)
 - Control params are all the same (eg THPOSS=6.5sigma).
 - Image-domain detections are the same as before (number and significance)!
- We are still (and always) looking & monitoring.

Sun Hour_Angle Distribution over the Mission

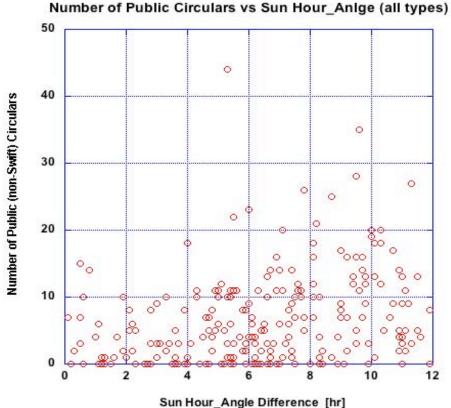


- First 2.0 years.
- Hour_angle of each trigger.
- Hint of improvement in the last year.

Histos of all GRBs and those with redhshifts vs Sun Hour_Angle. Correlation: More redshifts for the higher Hour_angles.

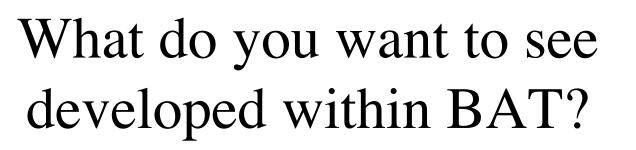


Absolute Sun Angle [hr]



More time on target to dig out those fainter bursts with the higher redshifts.

The larger the Sun angle the more observations; more specifically, the more successful observations.



Sun-block for Swift?

- The number of bursts with redshifts increases, the distance (z) increases, and the number of follow-up observations increases if we look farther away from the Sun.
- These are all good "Science" performance metrics.
- Clearly, it is desirable to figure out a way to increase the average Sun hour_angle distance in our observing program.

- Next slides will give some parameters and functionality that can be changed/expanded to accomplish your desirements.
- A) Responses tailored to a specific source.
- B) Responses tailored to classes of sources.
- C) Responses to all catalog sources.
- D) Change the response to GRBs.

Things that might be changed South

- Catalog Sources and Responses:
 - Can add up to 400 more sources in the On-board catalog;
 - Can add up to ~ 30 more src-specific or class-specific responses;
 - Scripts contain the BAT and Swift response functions.
 - More than 30 will require FSW changes (harder but not impossible).
- What specific responses?
 - Slew or not_slew by controlling the merit. (ie all 3 instruments or BAT-only response).
 - Amount of event-by-event data to capture.
 - Rate and duration of accelerated survey images (ie DPHs).
 - Modes for the NFIs.
 - Pulsar lightcurve folding.
 - Change the auto-escalation of the threshold (for the next successful trigger).

• Currently it is 2x; but maybe (say) 1.5x. (Source-specific?) Swift Workshop 1-2 May 07

Misc (1of2)

- Any sources to be added/deleted from the On-board Catalog?
 - If you add a source, then it can have a specific response.
 - If you delete a source, then it will get the "burst" response.
- Add/delete to the Ground Catalogs?
 - Can be different from On-board catalog.
 - Typically has more sources than On-board (~25 more now).
 - There is a "block distribution" ground catalog -- nothing in it so far.
 - Notices from those sources are <u>not</u> distributed.
- GRB vs Transient Identification:
 - a) GRB (<300sec), b) Unknown Transients (≥300sec), and
 c) Known Transient sources (catalog items).
 - Move the 300-sec GRB-vs-Transient boundary?

Misc (20f2)

- Any new BAT telemetry data products you'd like to see?
- Any new features you'd like to see in the GCN Notices? Services?

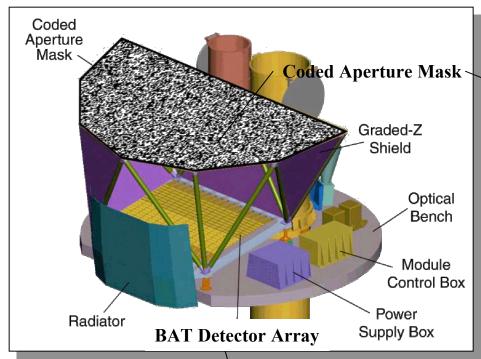
• Remind people that we pulsar lightcurve folding capability (nobody ever uses it).

You Need To

- Please email me/Neil with what you want. (Try to be specific where it needs to be specific and to be general/loose where it does not need to be specific. We will merge any conflicting desirements/requirements.)
- When might these changes be implemented?
 - Some things we can/will implement quickly (2-3 weeks);
 - Other things will take FSW changes (3-4 months).

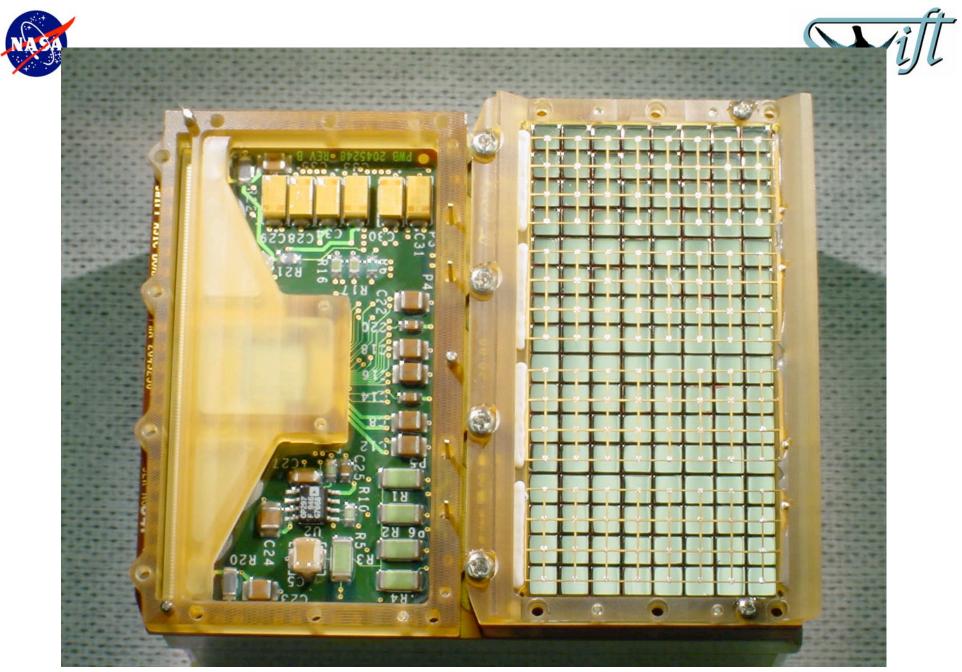
Possible Future Experiments Swift

- Lower the Threshold to go after fainter/farther bursts.
 - Will also get increased False_Positives
 - Handle them with new flag or different GCN Notice type.
 - Or block them in GCN distribution to the world.
 - Do only during day shift so FOT can kill the false positives.
- Eliminate the real-time human response to triggers.
 - No "1st Circulars" declaring GRB or Not during off-hours.
 - Wait until next day shift (includes weekend day shifts).
 - The false-positive rate is 2%.
 - "Questionable" triggers don't count as false-positives.
 - The false-negative rate is 7%.
 - Real GRBs that went out with the "Questionable" flag set.
 - How many of you use this human-in-the-loop added value?
 - We <u>really</u> do want to hear from you.



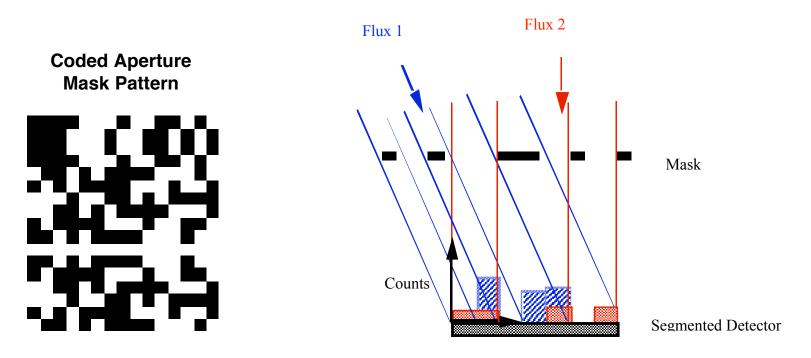
Backup/Optional Slides

Burst Alert Telescope (BAT)



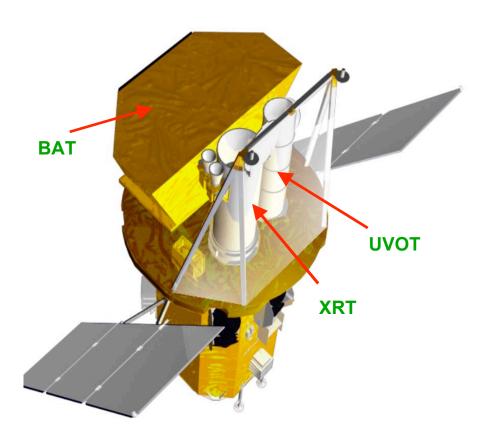
BAT Characteristics

- E Range: 15 150 keV (12-300)
- E Resoln: 7 kev (5)
- Loc Resoln: 1-4 arcmin (1-4)
- PSF: 22 arcmin (21.8)
- 2 steradian field of view
- 32K CZT dets, 5200 cm2
- Autonomous operations



Swift Workshop 1-2 May 07

Coded Aperture Imaging



- Source Photons "Encoded" by Partially Blocked Aperture
- Can be Decoded in Data Analysis to Determine

Swift Instruments

Instruments

- Burst Alert Telescope (BAT)
 - New CdZnTe detectors
 - Detect >100 GRBs per year depending on logN-logS
 - Most sensitive gamma-ray imager ever
- X-Ray Telescope (XRT)
 - Arcsecond GRB positions
 - CCD spectroscopy
- (UVOT) UV/Optical Telescope
 - Sub-arcsec imaging
 - Grism spectroscopy
 - 24th mag sensitivity (1000 sec)
 - Finding chart for other observers