

Prospects for Swift studies on X-ray binaries and AXPs/SGRs

Sergio Campana

Osservatorio astronomico di Brera

Hard X-ray sky

• LMXRB

• HMXRBs

INTEGRAL's view

Swift's strengths (XRB-I)

BAT monitoring of the X-ray sky (about 100 sources detected daily). BAT is able to discover new X-ray transient and follow them during the brightest part of the outburst. Daily 1 ks observation of the Gal. Center.

Krimm et al.

Swift's strengths (XRB-II)

Thanks to its scheduling flexibility ideal instrument to perform short exposures to identify and to provide an accurate localization of hard X-ray sources (e.g. INTEGRAL, RXTE, Swift-BAT) as well as past and present X-ray missions (RASS, ASCA and XMMSL).

Swift's strengths (XRB-III)

Thanks to its scheduling flexibility ideal instrument to perform (loose) monitoring of transient X-ray binaries.

Campana et al. 2007a

Swift's strengths (SGR)

Giant SGR1806-20 outburst

Swift's strengths (AXP)

CXOU J164710.2-455216 in Westerlund 1

(p) -5 -5 -10 -1 -10 -2 -2 -10 -2 -

Discovery of a burst with BAT

Monitoring with XRT, discovery of a timing glitch

Swift future: XRB

•Broad band capabilities: UVOT – XRT – BAT: monitor X-ray binary transient state changes, launch of micro-jet and jets

•X-ray burst statistics

•Detect in real time and follow superbursts

•Follow fast transient outbursts

•Follow transient outbursts down to quiescence

State transitions

BH XRB

Belloni 2007

NS XRB Homan et al. 2007

X-ray burst studies & statistics

Superbursts

Fast transients

IGR J11215-5952

Romano et al. 2007

(see also poster)

XTE J1739-302

Sguera et al. 2006

X-ray transients

Aql X-1

Campana et al. 1998

SAX J1808.4-3658

Campana et al. 2007a

Swift future: AXP/SGR

Follow long term flux and spectral changes

Detect bursts and/or follow them on a short time scale (repointing after any trigger from an AXP/SGR)

Follow the recovery after a glitch, either spectrally and temporally

AXP long term changes & simultaneous obs.

Campana et al. 2007b

Twisted magnetosphere scenario for AXPs

Den Hartog et al. 2007

Follow-up of AXP/SGR bursts

Israel et al. 2007b

CXO in Westerlund 1

Swift thanks to:

- Wide energy range UV to hard X
- Flexibility
- Sensitivity (especially for binaries and AXP that are bright objects)

Can in the next few years provide important results in this field

- Detecting (new outbursts, bursts, superbursts, glitches)
- Monitoring (evolution of outbursts, long term spectral changes, timing)
- Archiving (long term light curves)