Swift observation strategy: GRB Redshifts

T. Sakamoto (GSFC/ORAU)

Importance of anti-Sun pointing

Screening "possible" high redshift GRBs from the BAT prompt emission properties

Importance of anti-Sun pointing

Importance of GRB redshifts

- High-z GRBs Huge potential for studying early universe (z>10)

IR detection and spectroscopy
 Deep optical observations
 Notify a "possible high-z" from the Swift data

- Luminosity indicators Measurement of Dark energy (Schaefer) GRB properties (Ep, V, Lag, ..) + redshift

Variety of redshifts (from low to high z)

GRBs at the anti-Sun directions

Swift observation strategy

XRT positionsBursts with anti-Sun directions

• Point Swift to anti-Sun position as far as we can.

• XRT will focus on the prompt localization + early X-ray AG.

• No long follow-up by Swift (Sun angle < 120 deg. bursts)

Screening "possible" high redshift GRBs from the BAT prompt emission properties

Screening "possible" high-z GRBs from the BAT data

Find common characteristics of high-z GRBs

Alert the ground observers as a "possible" high-z GRB

Sample of GRBs

49 known-z long GRBs (T90 > 2 sec)
188 long GRBs (Dec 2004 – Feb 2007)
BAT event data analysis (*batgrbproduct*)

2007.05.01

Redshift vs. PL photon index

Redshift vs. # of Bayesian Blocks

Screening high-z GRBs

- PL photon index > -2
- 1-s peak flux < 1 ph cm⁻² s⁻¹
- # of BBs < 15
- T90 / (# of BBs) > 20 sec

GRB	Z	PhIndex	Peak flux	BB	T90/BB
050730	3.967	-1.53	0.5	5	31.3
050814	5.3	-1.80	0.7	7	21.6
050904	6.29	-1.25	0.6	6	29.0
060510B	4.9	-1.78	0.6	9	30.6
060522	5.11	-1.56	0.5	3	23.7
061110B	3.44	-1.03	0.4	6	22.3

[Excluded GRB with z > 4.5 is 060927 (z = 5.6)]

6 GRBs / 49 known-z long GRBs (11 GRBs / 188 long GRBs)

2007.05.01

Summary

Point Swift to the anti-Sun direction Double the number of redshifts

- XRT: prompt position but no long follow-up
- Q1. How long do we need to cool XRT to get the position?(Is cooling XRT during the SAA period enough?)
- Q2. Is it possible to change the threshold of a mode switching?
 Screening "possible" high redshift GRBs from the BAT prompt emission properties
 - We can alert possible high-z (z > 4) GRBs (~5 GRBs year⁻¹)
 - GRB detected by the BAT image trigger is very likely to be an "interesting" burst

Sun angle distribution 2007

Swift

City lights are not an excuse

Optical observations of GRB 030329

Roof of RIKEN main building (Wako, Saitama)

Roof of Tokyo Tech. main building (Meguro, Tokyo)

Astronomy Picture of the Day (11/27/00)

Redshift vs. T90/T50

Swift

Swift

Sun angle vs. redshifts

2007.05.01

Telescopes around GSFC

UMBC/Joint Center for Astrophysics

0.83 m (top of physics building)

Swift Worksł

University of Maryland Observatory

2007.05.01

GRB follow-up telescopes at the east coast of U.S.

GRB follow-up telescopes

City lights are not an excuse

Optical observations of GRB 030329

Roof of RIKEN main building (Wako, Saitama)

T ₀ + 1.4h	T ₀ +1day

(0.25m Torii)

Swift GRBs (magnitude < 17 mag)

- -050319A : unflt = 16 -051109A : unflt = 15.4
- -050525A : unflt = 14.7 051111A : unflt = 13
- -050603A : R = 16.5 -051211B : unflt = 16.2
- -050801A : unflt = 15 -060117A : R = 11.5
- -050820A : R = 14.7 -060418A : V = 14.5
- -050822C: V = 15.5 -060512A: white = 16.2 061021A: white = 14.9
- 050922C : unflt = 14.7 060605A: unflt = 16.3

Astronomy Picture of the Day (11/27/00)

-070318A : V = 15.4

2007.05.01

Why Swift is pointing closer to the Sun

High-z objects: Galaxy, Quasar, ... and GRB

Galaxy (Ly α Emitter)

Quasar

GRB

Observed wavelength [nm]

(Ohta Kyoto GRB workshop)

Galaxy:

- Very dim (low SN)
- Limited spectral information

Quasar: - Not a 'normal' enviroment - Ionized by own UV radiations - Complicated spectrum GRB:
'Normal' (star forming) environment
Transient emission
Simple power-law spectrum

SWI

2007.05.01

Swift GRB observation strategy

XRT position

XRT light curve

Spectroscopy

- Point Swift to anti-Sun position as far as we can.
- XRT will focus on the prompt localization + early X-ray AG.
- No long follow-up by XRT (Sun angle < 120 deg. bursts)

2007.05.01

Advantage of GRBs for measuring dark energy

GRB

Importance of GRB redshifts

- High-z GRBs Huge potential for studying early universe (z>10)

IR detection and spectroscopy
 Deep optical observations
 Indication of "possible high-z" from the Swift data

- Luminosity indicators Measurement of Dark energy (e.g. Schaefer) GRB properties (Ep, V, Lag, ..) + redshift

> Variety of redshifts (importance of low-z GRBs)
> Optical/IR/radio detection of AG 3. Spectroscopy

Summary

Point Swift to the anti-Sun direction Double the number of redshifts

- XRT: prompt position but no long follow-up
- Q1. How long do we need to cool XRT to get the position?(Is cooling XRT during the SAA period enough?)
- Q2. Is it possible to change the threshold of a mode switching?
 Screening "possible" high redshift GRBs from the BAT
- prompt emission properties
 - We can alert possible high-z (z > 4) GRBs (~5 GRBs year⁻¹)

