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ABSTRACT : Neutrino-based astronomy provides a new window on the most energetic processes in the universe. The discovery of high-energy (E,, = 10'* eV) neutrinos  The expected neutrino event rate is a function of the distribution of each individual burst in spectroscopically observed or best-estimated redshift. Strict spatial and temporal
from gamma-ray bursts (GRBs) would confirm hadronic acceleration in the relativistic GRB-wind, validate the phenomenology of the canonical fireball model and possibly  constraints (based upon satellite detection), in conjunction with selection criteria (optimized for sensitivity) will be leveraged to realize a nearly background-free search. This
reveal an acceleration mechanism for the highest energy cosmic rays. The Antarctic Muon and Neutrino Detector Array (AMANDA) is the world's largest operational work augments the primary science goals of GRB satellite detectors such as BATSE, by providing a necessary complementary neutrino analysis, which is readily applicable
neutrino telescope, with a PeV muon effective area (averaged over zenith angle) ~ 50,000 m?. AMANDA uses the natural ice at the geographic South Pole as a Cherenkov to future missions such as Swift and GLAST. Coincident neutrino searches using Swift GRBs would work in conjunction with Swift’ s key projects to enhance Swift's
medium and has been successfully calibrated on the signal of atmospheric neutrinos. Contrary to previous diffuse searches, we describe an analysis based upon confronting  science return without imposing additional demands upon mission resources. Future work involves a natural extension to |ceCube (the next generation km-scale neutrino
AMANDA observations of individual GRBs, adequately modeled by fireball phenomenology, with the predictions of the canonical fireball model. The expected neutrino telescope), whose superior sensitivity coupled with the high quality and completeness of Swift and GLAST data may help constrain (or in some cases rule out) certain GRB
flux isdirectly derived from the fireball model description of the prompt GRB photon energy spectrum, whose spectral fit parameters are described by the Band Function. models. In this manner, AMANDA and IceCube will help maximize neutrino astronomy’s contribution to the study of GRBS, even in the case of non-detection.
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Minimum Proton Energy*(e,) Coincident Neutrino Ener gy* (e,) *In Laboratory Frame &, (eV) , Declination = 0(Northern hemisphere localization) © € o In the framework of the canonical fireball phenomenology (see figure 1), GRB el ectromagnetic observables such as duration, fluence, and luminosity (viaredshift) coupled AMANDA observations in this work. In the impending

"o 0 20 30 40 50 Duration (T + o) =2s(i.e. Long ?RBS) The prompt photon energy spectrum can be adequately described (independently of with the photon energy spectral fit parameters are required to parameterize the normalization, break energies and spectral slopes of the neutrino spectra [1] in spatial and eraof Swift and IceCube, the rigorous modeling and
F e, [Photons/(cm?-s )] Peak Flux = 1.5 photons:(cm?-s) physical emission models) by the Band function [6] (see equation 2, figure 4a & 4b), as temporal coincidence with the prompt g-ray emission. Since these observables vary from burst to burst, the expected neutrino energy spectrum is also uniquely definedfor ~ analysis of discrete GRBs and their observations will
The distributions of the observabl esin figures 2a-2d, were generated from the values given in [2]. In conjunction with the long as the spectral fit parameters are allowed to vary (i.e. there are no universal set of  each discrete GRB. As can be seen from the above distributions (figures 2 — 4), the parameters can differ significantly from their canonicd (averaged) values. Hence, both  help either detect a signal or seriously constrain (and in
fluence and duration, the spectroscopic redshift (figure 3a) isused to determined the burst luminosity (see equation 1). parameters). Figures 4c - 4f illustrate the distribution of the peak spectral fit parameters the normalization and shape of a discrete neutrino energy spectrum can vary significantly from an averaged (diffuse) [8] construction, which directly affectsthe event rate  some cases rule out) models. In this manner, neutrino
When not observed, the redshifts for this sample were estimated via either variability [3], lag [4], or peak energy (i.e. E,, [6] for the bursts used in this analysis. The importance of properly fitting discrete expectation (see figure 5) and sensitivity optimization of coincident search analyses (respectively) as performed by Cherenkov telescopes such as AMANDA or |ceCube. astronomy can maximize its contribution to the study of
the energy at which the energy flux per logarithmic energy band peaks) [5] luminosity relations (see figures 3b -3d). photon energy spectra can be seen in the analysis of GRB 941017 [7]. The focus of thisongoing analysis, isto investigate the effects of individual neutrino spectrafor discrete GRB observations with AMANDA and eventually |ceCube. GRBs, even in the event of a non-detection.
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preliminary neutrino event upper limit of 1.45[9]. A full publication is currently in progress.
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