

Status of Swift Operations & Instruments

> John Nousek Penn State University

San Diego AAS Meeting January 12, 2005

Outline

- Operational status
- Spacecraft status
- Instrument status
 - Burst Alert Telescope (BAT)
 - X-Ray Telescope (XRT)
 - UV/Optical Telescope (UVOT)
- Science Operations plans

MOC Facility

Located in Bristol Office Park, State College, PA

~ 2 mi. from Penn State campus

Houses FOT & SOT:

Flight Operations Team (FOT)

responsible for observatory Health & Safety

Science Operations Team (SOT)

- responsible for Scientific operation of Swift Has continuously operated Swift successfully from L+80 minutes to now!

Mission Operations Personnel

- Flight Operations Team Mark Hilliard (Lead)
 - Harry Anderson, Chuck Cooper, Rob LaVerghetta, Justin Knavel, Doug Spiegel
- SpectrumAstro Spacecraft Team Lisa Nelson (L&EO Director)
 - Jeff Schieler, Kent Mitterer, John Jordan, Eric Orrill, Igor Lazbin
- Science Operations Team David Burrows (SOT Lead)
 - Sally Hunsberger, Jaime Kennea, Judy Racusin, David Morris, Mariya Ivanushkina
- Burst Alert Telescope Team Scott Barthelmy (BAT Lead)
 - D. Palmer, E. Fenimore, C. Markwardt, J. Cummings, A. Parsons, J. Tueller, H. Krimm
- X-Ray Telescope Team David Burrows (XRT Lead)
 - Joe Hill, Tony Abbey, Andy Beardmore, Claudio Pagani, Jaime Kennea
- UV/Optical Telescope Team Pete Roming (UVOT Lead)
 - Phil Smith, Barry Hancock, Pat Broos, Scott Koch, Howard Huckle, Mary Carter
- NASA Swift Project Team Joe Dezio (Project Manager)
 - Frank Marshall, Tim Gehringer, Renan Borelli, Dave Bundas, John Ong
- Swift Mission Operations Manager Lou Parkinson (Mission Readiness Lead)
- Swift Mission Director John Nousek
 - Margaret Chester, Tom Taylor, Alan Wells
- Swift Principal Investigator Neil Gehrels

Swift Activation Timeline

- Week 1 Nov 20 27
 - Activate spacecraft
 - Turn on instrument electronics
- Week 2 Nov 28 Dec 4
 - Spacecraft attitude control testing
 - BAT module activation
- Week 3 Dec 4 11
 - XRT activation
 - Figure of Merit process testing
- Week 4 Dec 12 19
 - Autonomous slew testing
 - UVOT activation
- Week 5 Dec 20 27
 - GRB observations
 - XRT radiator orientation thermal tests
- Week 6 Dec 28 Jan 3
 - XRT Target of Opportunity test
 - Automated Target slewing enabled
- Week 7 Jan 4 Jan 11
 - UVOT High Voltage enabled

Swift Milestones:

- Dec 3 BAT first source (Cyg X-1)
- Dec 12 XRT first light (Cas A)
- Dec 17 BAT first imaged GRB (GRB 041217)
- Dec 23 XRT first afterglow (GRB 041223)

Jan 12 – UVOT first light

See details at Mission Director's Daily Status Reports:

http://swift.gsfc.gov/docs/swift/operations/status_log

Spacecraft Status

- Spacecraft placed into 584 x 601 km orbit; 20.6° inclination
- Swift has full power capability; operates in both Sun & Eclipse at full capability
- Star trackers consistently and reliably lock on stars
 - Attitude stability during lock is better than tracker ability to measure
 - Attitude accuracy meets or exceeds requirement (3')
 - Attitude knowledge & stability all exceed requirements across all orbital events (i.e. slews, eclipse entry & exits)
 - No observable attitude disturbances correlated with Solar Array stepping
 - ACS settling after slewing is very rapid (<30 seconds)
- Spacecraft RF communications; Thermal control; On-board clock
 - all exceeding requirements
- Space & Ground Networks working very well
 - More than 600 Malindi contacts >99% reliable
 - TDRSS forward links through 4 TDRS satellites using WDISC >95% reliable
 - TDRSS Demand Access System >85% reliable

Swift Instruments

Instruments

- Burst Alert Telescope (BAT)
 - New CdZnTe detectors
 - Most sensitive gamma-ray imager ever
- X-Ray Telescope (XRT)
 - Arcsecond GRB positions
 - CCD spectroscopy
- UV/Optical Telescope (UVOT)
 - Sub-arcsec imaging
 - Grism spectroscopy
 - 24th mag sensitivity (1000 sec)
 - Finding chart for other observers

Optical Bench

Spacecraft

- Autonomous re-pointing, 20 75 s
- Onboard and ground triggers

Swift Instruments

BAT Instrument – Scott Barthelmy, Lead Developed at GSFC, with software at LANL

BAT Characteristics

- 15 150 keV (300 keV) energy range
- 22 arcmin angular resolution
- 2 steradian field of view
- 2-5 times BATSE sensitivity

BAT Imaging Performance

Image by Hans Krimm

BAT Spectral Performance

- Power law fit
- Index = 2.13 ± 0.03
- Normalization = 9.70 ± 0.86 @ 1 keV
- Reduced Chi2 = 1.48 (53 DOF)

Analysis by G. Sato

BAT Detector Spectral Resolution

BAT's First Burst

Plot by H.Krimm

- Also detected by HETE, RHESSI, Odyssey, & KONUS
- Rate Trigger: ~200 sigma
- No imaging possible; burst came up through the bottom of the instrument

BAT GRBs and SGR – see talk S. Barthelmy

GRB	Time	RA	Dec (12000)	T90	Fluence	Comments
		(32000)	(32000)	[360]		
041211e	23:57:41	n/a	n/a		n/a	Bottom of the instrument.
041217	07:28:30	164.79	-17.95	7.5	65.7	Our first imaged burst
041219	01:42:18	6.51	62.85	(520)	1000	Bright, multi-peak
041219b	15:38:48	167.67	-33.46	(30)		1 big spike, 3 little spikes; IPN
101219c	20:30:33	343.97	-76.80	(40)	20	3 spikes
041220	22:58:26	291.24	60.69	5	8.3	FRED
041223	14:06:18	100.12	-37.03	107	509	Multi-peak, bright
041224	20:20:57	56.20	-6.62	235	218	
041226	20:34:19	79.77	73.32	~15	n/a	Weak spike
041227	21:30:25	n/a	n/a	(400)	[10^6]	SGR1806-20 Giant Flare
041228	10:49:13	336.65	5.04	62	78	
050105	00:45:53	n/a	n/a	(8)	n/a	Weak detection (6 sigma); not issued
050107a	02:08:21			(0.1)		SGR1806-20 still active
050107b	13:12:26			(0.1)		SGR1806-20 still active

GCN Circulars issued on all 9 gold-plated GRBs in T+3-4 hrs.

XRT Instrument- David Burrows, Lead Developed at U. Leicester, Brera & PSU

XRT Characteristics

- 0.2 10 keV energy range
- 18 arcsec angular resolution
- 130 cm² eff. area at 1.5 keV
- 24' x 24' field of view
- 2x10⁻¹⁴ erg cm⁻² s⁻¹ sensitivity (20 ksec)

XRT TEC Anomaly

- On Day 343 Voltage to XRT Thermo-Electric Cooler dropped to 0 Volts, shortly prior to first cooling of CCD
- Cause of anomaly still under investigation
- Repeated attempts have failed to get TEC to operate
- Current operational situation:
 - XRT is forced to operate at temperature established by passive XRT radiator cooling

XRT TEC Anomaly Impacts

- Passive XRT radiator cooling will result in CCD temperatures in range of -40 to -75C
- XRT flight parameters have been adjusted to give satisfactory results for T < -50C
- Operational management can result in CCD temperatures reliably below -50C
- Impacts:
 - XRT will require more in-flight calibration data & ground analysis to produce calibration products for the new operating parameters
 - Science planning tools will need modification to constrain target observations to ensembles which result in cool CCD thermal orientations
- Summary:
 - XRT will be able to accurately position GRB counterparts & measure their spectra
 - TEC Anomaly will not reduce the portion of the sky viewable by XRT

XRT Point Source Response

XRT Image of Cas A

- Cas A first light image
- 13 ks integration time
- Analysis by Pat Romano OA Brera J. Osborne, Mike Goad – U. Leicester

XRT Spectrum of Cal Sources

1000

100

sec/keV

sw00060462000.008, LR mode, grades 0-5

Lines @ 5.825 & 6.403 keV + 5.68 keV

XRT spectral response is good in all modes

Some recalibration required due to temperature change effects

XRT Timing/Spectral Performance

XRT Afterglow

- BAT discovered GRB041223 at 14:06:18 UT (GCN 2898, Tueller et al.)
- Swift slewed to location as a Target of Opportunity
- XRT observations started at 18:43:59 UT
- Detected a fading X-ray afterglow (GCN 2901, Burrows et al.)
- Position confirmed by LCO40 (GCN 2902, Berger et al.) & VLT detections (GCN 2903, Malesani et al.)
- For more details see talk by David Burrows 160.02

UVOT Instrument – Pete Roming, Lead Developed at MSSL & PSU

UVOT Characteristics

- 170 650 nm wavelength band
- 0.9 arcsec angular resolution
- 17' x 17' field of view
- 24th mag in 1000 s sensitivity

UVOT Performance

- UVOT Preliminary afterglow location capability first tested on Monday
- UVOT activation still in progress includes focus testing & adjustment to PSF
- UVOT sensitivity & grism calibration will be conducted following detailed validation and adjustment of safety circuit
- UVOT activation planned to be completed in about two more weeks
- UVOT imaging positions may require 'shift & add' software
 - Parameters to be determined from flight experience
 - Build 7 software has been developed, will be implemented during Verification Phase
- See talk by Pete Roming 160.03

Swift Mission Ops Concept

Swift Science Operations

- Burst Advocates assigned for each burst. Responsibility to assure that
 - Swift data for the GRB are analyzed properly and promptly
 - Follow-up observations are coordinated
 - Burst notifications and publications are produced
- GRB observations in year 1
 - All BAT GRB positions slewed to if allowed
 - 20-50 ks automated observations by XRT & UVOT,
 - Further planned observations scheduled from ground

Partner Follow-up Telescopes

AEOS Telescope (Hawaii) ARAGO Telescope (Antarctica) ARC Telescope (New Mexico) Brera Observatory (Italy) Chandra ESO (La Silla, Paranal, VLT) **ESA's INTEGRAL mission Fast Alert MachinE (Italy) Faulkes Telescopes (Hawaii & Australia) Galileo National Telescope (La Palma) Hubble Space Telescope Hobby-Eberly Telescope (Texas)** INTEGRAL **Isaac Newton Telescopes (La Palma) KAIT (California)** W. M. Keck Observatory (Hawaii) Large Binocular Telescope (Arizona) LIGO (Louisiana and Washington) Liverpool Telescope (La Palma) **McDonald Observatory (Texas)**

Milagro Gamma-ray Obs. (New Mexico) NASA (IRTF, Hubble & Spitzer) NOAO (CTIO, KPNO) **Nordic Optic Telescope (La Palma) Okayama Observatory (Japan) Rapid Eye Mount Telescope (Chile) ROTSE-II** (New Mexico) **SARA Observatory (Arizona)** SIRTF South African Large Telescope **Super-LOTIS** (Arizona) **TAOS Telescope (Taiwan) TAROT Telescope (France) Tenerife Observatory U.S. Naval Observatory (Arizona) VERITAS Observatory (Arizona)** WASP Telescope (La Palma) WIYN Observatory (Arizona) Wyoming Infrared Observatory XMM Newton