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Abstract. The study of the early high-energy emission from both long and
short gamma-ray bursts (GRBs) has been revolutionized by the Swift mission.
The rapid response of Swift shows that the non-thermal x-ray emission transitions
smoothly from the prompt phase into a decaying phase whatever the details of
the light curve. The decay is often categorized by a steep-to-shallow transition
suggesting that the prompt emission and the afterglow are two distinct emission
components. In those GRBs with an initially steeply decaying x-ray light curve, we
are probably seeing off-axis emission due to termination of intense central engine
activity. This phase is usually followed, within the first hour, by a shallow decay,
giving the appearance of a late-emission hump. The late-emission hump can last
for up to a day, and hence, although faint, is energetically very significant. The
energy emitted during the late-emission hump is very likely due to the forward
shock being constantly refreshed by either late central engine activity or less
relativistic material emitted during the prompt phase. In other GRBs, the early
x-ray emission decays gradually following the prompt emission with no evidence
for early temporal breaks, and in these bursts the emission may be dominated
by classical afterglow emission from the external shock as the relativistic jet is
slowed by interaction with the surrounding circum-burst medium. At least half
of the GRBs observed by Swift also show erratic x-ray flaring behaviour, usually
within the first few hours. The properties of the x-ray flares suggest that they
are due to central engine activity. Overall, the observed wide variety of early
high-energy phenomena pose a major challenge to GRB models.
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1. Introduction

Gamma-ray bursts (GRBs) are detected as bright, brief flashes of gamma-rays which occur at
some random location on the sky. For a short time, typically a few tens of seconds, the GRB is the
brightest single object in the gamma-ray sky, and more importantly is the intrinsically brightest
object in the Universe. It is now generally accepted that long-duration GRBs result from the death
of a rapidly rotating massive star (a collapsar) while short-duration GRBs arise from a merger of
two compact objects, most likely two neutron stars or a neutron star and a black hole (see [1]–[4]
and references therein). Either the collapsar or merger results in a black hole fed for a short
time by an accretion disk or torus. The accreting black hole can somehow power a relativistic
jet, presumably oriented along the rotation axis of the black hole. The jet contains a relatively
modest amount of baryonic material moving at very high Lorentz factor—the fireball. Within
the jet the flow is not homogeneous, leading to internal shocks which produce the initial, prompt
gamma-rays that can be viewed if our line-of-sight lies within the jet beam. As the jet moves
out from the progenitor, it also encounters circum-stellar and inter-stellar material which results
in classical afterglow emission produced by an external shock ([4] and references therein). We
observe some combination of these emission components and require as continuous and lengthy
observation as possible in order to disentangle them and hence test GRB models.

In this paper, the early gamma-ray and x-ray emission from GRBs are discussed,
concentrating on the observed temporal and spectral behaviour as the GRB evolves over the
first few hours. Early GRB observations have been revolutionized following the launch of the
Swift satellite on 20 November 2004 [5].Although gamma-ray emission can typically be detected
by the Burst Alert Telescope (BAT; [6]) on Swift for only a few tens of seconds, the satellite can
rapidly (∼100 s) slew to point its Ultraviolet and Optical Telescope (UVOT; [7]) and x-ray
Telescope (XRT; [8]) at the GRB. The XRT permits observations in the 0.3–10 keV band. This
capability has ended what might be termed the ‘x-ray dark ages’ for GRBs as previous missions
rarely obtained x-ray data in the period from a few minutes to a few hours. It is this capability
that we will exploit to describe the early high-energy emission from GRBs.
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In section 2, an historical overview and outline why Swift was built are provided. The
observational results are summarized in section 3, in which the emphasis is on the new phenomena
revealed by Swift. Conclusions are given in section 4.

2. Historical overview

GRBs were first announced as MeV events lasting between 0.1 and 30 s, not from the Earth
or Sun [9]. Their discovery led to the inclusion of the Burst and Transient Source Experiment
(BATSE) instrument on the Compton Gamma-Ray Observatory, which was operational between
1991 and 2000. See [10] for a BATSE-era review. BATSE acted as an all sky monitor over
20–600 keV, detecting around 2700 GRBs. The striking isotropy of these GRBs indicated
an origin either very close by or at cosmological distances, but the BATSE GRB position
uncertainties of 4 arc-minutes or larger prevented identification of possible counterparts in other
regions of the electromagnetic spectrum. Even so, tantalizing details did emerge from the large
BATSE GRB sample: the burst duration distribution was found to be bimodal, with a population
of short and spectral hard bursts having durations of around 0.1–2 s and a larger group of slightly
softer bursts with typical durations of 10–100 s [11]; and the distribution of burst intensities was
non-Euclidean, pointing to a distance effect in the population.

Over the BATSE bandpass, GRB spectra were shown to be non-thermal and usually well
fitted by a broken power law or Band function [12, 13]. A minority of the GRBs detected by
BATSE was also detected at higher energies by the EGRET or COMPTEL instruments on CGRO.
Aside from a few exceptions [14], the extrapolation of the Band function fitted the very high-
energy spectra well [15, 16]. The burst profiles, which were highly variable, defied classification.

It was not until the Beppo-SAX satellite (1996–2002) coded-mask hard x-ray Wide Field
Camera detected bursts, that a GRB was rapidly observed with an imaging XRT. The discovery of
a fading x-ray afterglow to GRB970228 [17] ushered in a new era in which positions sufficiently
precise became available quickly enough for ground-based follow up observations. Faint optical
afterglows were discovered, and it was quickly established that GRBs occurred at very large
distances (the first redshift was measured for GRB970508 at z = 0.835 [18]).

With the distance scale known, the energetics of GRBs were thrown into sharp relief. The
observed fluences (the flux integrated over the duration of the burst) and redshifts led to isotropic
energies of ∼1052–1054 erg, comparable to or larger than those of supernovae. The very high
gamma-ray luminosity leads to a compactness problem caused by the high electron–positron
pair production rate. This can be solved by invoking a very high outflow velocity, v with Lorentz
factor, �jet = (1 − (v/c)2)−0.5 ∼ 100–300 [19, 20].

A connection with supernovae was soon revealed by GRB980425/SN1998 bw, although this
was an atypically nearby and low-energy burst [21, 22]. The supernova nevertheless showed very
high velocities (tens of thousands of kilometres per second), and was given a new classification
as a hypernova. The more typical GRB030329 confirmed the hypernova connection [23, 24],
firmly establishing the collapsar model for long GRBs. Optical observations of GRB afterglow
decays also showed a break to an increased decay rate at around a few days. This was taken to
be a sign that the relativistic beaming of the slowing collapsar ejecta had declined to the opening
angle of the ejecta jet, θjet, derived to be ∼3–40◦ [25]). This evidence for a jet rather than isotropic
ejecta simultaneously reduced the energetics of the GRB to ∼1051 erg, and of course increased
the implied GRB production rate. See [4] for an excellent review of GRB knowledge before the
launch of Swift.
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Prior to Swift, afterglows had only been securely detected for long GRBs. The expectation
was that short GRBs might have a different progenitor (e.g., a neutron star–neutron star collision),
however the lack of any short GRB afterglows and hence precise positions for these bursts had
prevented the kind of progress made with the long GRBs. Swift was created to provide accurate
and prompt positions for both short and long GRBs. The great difficulty of obtaining early x-ray
observations with existing satellites had led to very poor knowledge of the afterglow behaviour
before around 8 h. Swift has shown the richness of this interval and has clarified the nature of
the short GRBs. There is much still to be understood but Swift is delivering a wonderfully rich
scientific return.

3. Observations in the Swift era

Since launch Swift has detected an average of two GRBs per week. The standard sequence of
observations starts with detection by the BAT. The on-board software then determines if it is
safe to slew, and if so commands the spacecraft to turn and point its narrow-field instruments at
the burst location. The slew typically takes 1–2 min. Thus, for the longest duration bursts, XRT
and UVOT observations can begin, while the BAT is still detecting the GRB. This capability of
rapid, autonomous response provides data which have revealed a wealth of phenomena in the
x-ray afterglow. Swift has detected a wide range of bursts including the highest redshift GRB to
date [26] and the first localization of a short burst [27].

We adopt the convention here of describing GRBs as long or short in terms of the timescale
over which 90% of the gamma-rays were detected—the T90 parameter. GRBs with T90 greater
than or less than 2 s are denoted long or short bursts respectively [11]. The GRB x-ray flux can
be represented as a function of time and frequency using a function fν ∝ ν−βt−α, where β is the
spectral index and α is the temporal index. The photon index � is related to β by � = β + 1.

The Swift data presented here were processed using the standard analysis software. The
BAT data were processed using Swift software v2.0 as described in the BAT Ground Analysis
Software Manual [28] and then light curves and spectra were extracted over 15–150 keV. Power
laws were fitted over the T90 period to provide spectral indices (fν ∝ ν−βb). In most cases, a single
power law provides a statistically acceptable fit (i.e., reduced chi-squared, χ2

ν � 1), although on
occasion a cutoff power law provides a better fit. Similar power law fits were used to parameterize
the XRT spectra (fν ∝ ν−βx), over 0.3–10 keV. For many GRBs intrinsic absorption in addition
to the Galactic column is required to provide a good fit. The required intrinsic column is in the
range 2–35 × 1022 cm2 [29, 30].

Analysis of a large GRB sample [30] shows that the XRT spectra of GRBs usually require a
softer power law than the BAT spectra (i.e. βx > βb). To form unabsorbed, 0.3–10 keV flux light
curves for each GRB, we therefore (i) converted the XRT count rates into unabsorbed fluxes
using the XRT power law spectral model and (ii) converted the BAT count rates into unabsorbed
fluxes by extrapolating the BAT data to the XRT band using a power law spectral model with
an absorbing column derived from the XRT data and a spectral index which is the mean of the
XRT and best-fit BAT spectral indices. In those GRBs which have high signal-to-noise ratio
data, more complex spectral evolution can be seen, but the above procedure has been applied for
consistency for all bursts discussed in this paper.

The initial Swift results appeared contradictory; some long-duration bursts displayed a rapid
decline in the first hour, with temporal decay indices, α � 3 [31, 32], while in others the early
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Figure 1. Example bursts showing the various behaviour patterns seen by Swift:
a steep-to-shallow transition (GRB050315, dark upper points); a large x-ray
flare (GRB050502B, middle light points); and a gradually declining afterglow
(GRB050826; lower points, divided by 100 for clarity). BAT data are shown as
crosses, XRT data as filled circles.

x-ray flux declined more gradually with α ∼ 1 [33]. Several of those with a steep decline also
displayed a shallower decay starting within an hour and lasting up to a day from trigger. A
large fraction of GRBs also have x-ray ‘flares’ during the first few hours superimposed on the
declining light curves. Examples of the various observational phenomena are shown in figure 1.
Here, GRB050315 shows a steep decline followed by a long shallower decay before breaking
again at late times; GRB050502B displays a large x-ray flare, while GRB050826 shows a gradual
decline after the prompt emission. As more bursts have been observed a pattern has emerged
which is summarized schematically in figure 2 (see also [30, 34, 35]). Each of these phenomena
are discussed below, but the overall behaviour is as follows:

(i) The ‘prompt’ emission is that emitted directly during the burst. With Swift this emission is
seen by the BAT but can also be detected by the XRT if the burst is long enough to last
until the completion of the first slew to target. Most bursts observed by Swift typically have
a 15–150 keV spectral index of βb = 0–2 during the prompt phase.

(ii) The prompt phase is followed by a power law decline phase. The first temporal index, α1,
during this phase can be very large (up to ≈5) and in most GRBs α1 > 2, but in a significant
minority, perhaps 20–30%, a gradual decline is observed with 0.5 � α1 � 1.5. The wide
range in temporal index suggests several emission processes may be involved. The spectral
index in the 0.3–10 keV band during this phase is usually in the range 0.5–2.5, although
occasionally larger values are seen.

(iii) For those bursts which initially decline steeply, the decay breaks to a shallower rate, typically
within the first hour, such that 0.5 � α2 � 1.5. This ‘late-emission hump’, can last for up
to ∼105 s before breaking to a steeper decay. The late-emission hump appears to have a
harder spectrum on average than the steep decline phase (subsection 3.3). It can have a
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Figure 2. A schematic view of the early GRB x-ray light curve. Following the
prompt emission, which typically lasts a few tens of seconds, the decay tends to
follow one of two paths: (i) a steep decay (flux ∝ t−3), during which the flux can
fall by 3 or more orders of magnitude, followed by a shallower, late-emission
hump (∝ t−0.5) starting at ∼103s; or (ii) a gradual decay (∝ t−1). Either decay
path can end with a break at > 104s to a steeper decay. X-ray flares can occur
during either decay path, most prominently during the first hour. See text for
details.

fluence equal to that of the prompt phase [30], so although faint in observed flux, this phase
is energetically very significant.

(iv) For those bursts which initially decline gradually the temporal and spectral indices are
broadly consistent with a ‘classical afterglow’ interpretation, in which the x-ray emission
comes from the external shock. In these GRBs, the late-emission hump is usually not seen.
This does not mean that the late-emission hump is absent as it may be hidden by the classical
afterglow component.

(v) Limited statistics make quantifying later phases difficult, but both the initially steeply
declining bursts and those that decline more gradually can show a late temporal break
(typically at 104–105 s) to a steeper decay. These late breaks are not seen in all GRBs—some
decay continuously beyond 106 s until they fade below the Swift XRT detection limit. There
is usually no evidence for spectral changes during late temporal breaks, which can be
represented either as a series of temporal breaks using multiple broken power laws or a
smoothly curving decay (e.g. [32]).

(vi) X-ray flares are seen in the first few hours for around half of the GRBs observed by Swift ,
and occur in GRBs which decline rapidly or gradually. The majority of these flares are only
detected in the XRT but in some bright, long bursts flares are observed simultaneously with
the BAT. Strong spectral evolution can be observed in some cases. Most of the x-ray flares
are energetically small, but a few are very powerful [36]–[38] with a fluence comparable to
that of the prompt phase. Late flares are also occasionally seen.

(vii) The x-ray light curves for short bursts have been less well studied by Swift as they are fainter
(on average) and Swift has detected fewer examples of short bursts. To date, the short burst

New Journal of Physics 8 (2006) 121 (http://www.njp.org/)

http://www.njp.org/


7 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Figure 3. The distribution of burst durations T90 (left panel) and 15–150 keV
fluence values (right panel) for GRBs detected by the Swift BAT. The dotted line
in the left-hand panel is the T90 distribution for BATSE normalized to the number
of Swift bursts.

light curves display a range in phenomena remarkably similar to those seen in the long
bursts, including either rapid or gradual decay, flares and a late-emission hump [39, 40].

The behavioural pattern of prompt emission followed by a steep x-ray decay and then a
shallow decay has been characterized as the ‘canonical GRB light curve’ [34]. But, while this
pattern is seen in a majority of GRBs, as outlined above, it is not observed in all. To understand
the various phases we need to consider each of them in turn.

3.1. The prompt phase

BAT has detected and located on-board the prompt emission of GRBs at a rate of approximately
100 yr−1. In terms of duration, BAT GRBs span the same range as those detected by the BATSE
instrument, as illustrated in figure 3. The BAT data are for those GRBs with values of T90,
15–150 keV fluence and spectral index available from the data table on the Swift web site [41] as
of mid-February 2006. While the parameters given in the data table are preliminary, the shape
of the distribution does not change significantly if data from the forthcoming Swift catalogue
are used [42]. The BATSE data plotted in figure 3 are those from the revised 4B catalogue [43].
Comparison of the BAT and BATSE distributions are difficult due to their different energy-
dependent sensitivities and trigger software [44], but as for BATSE, most Swift GRBs have
durations of 10–100 s and have a 15–150 keV fluence within a factor of 10 of 2 × 10−6 erg cm−2.
Figure 4 shows how BAT fluence correlates with T90, illustrating that the shortest GRBs have
much less fluence than the longest.

The spectral indices derived from spectral fits to the 15–150 keV BAT data are shown in
figure 5. Due to differences between the BAT and BATSE detector energy bands and how BAT
uses rate triggers plus image-accumulation to find a point source, the BAT is more sensitive
than BATSE to long, soft bursts and detects relatively fewer short, hard bursts than might be
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Figure 4. Correlation of the 15–150 keV fluence with T90 for GRBs detected by
the Swift BAT. The very long burst at far right is GRB 060123. The sensitivity of
the BAT limits the detection of long faint GRBs.

Figure 5. The distribution of BAT spectral indices for GRBs. Left-panel: the
spectra were fitted using either a single power law or a cutoff power law and are
shown as the dark or light grey histograms respectively. The cutoff power law
model was used when that improved the fit at >99% confidence. Right-panel:
correlation of the BAT spectral index with T90. Spectra fitted using either a single
power law or a cutoff power law are shown as filled dots or stars respectively.

expected despite its greater sensitivity to short triggers [44]. Thus, the large majority of all
BAT-detected bursts lie in the long, soft category, and include among them, the highest redshift
bursts yet detected. There is some indication from figure 5 that shorter bursts are spectrally harder,

New Journal of Physics 8 (2006) 121 (http://www.njp.org/)

http://www.njp.org/


9 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

as previously noted for BATSE bursts [11], but a much larger sample is required to confirm
this trend.

3.2. The early decay phase

One of the most surprising results from Swift has been the rapid decay observed in many bursts
starting, typically, within a few minutes of the trigger. The steep decay rates, t−α with α = 2–5,
are significantly larger than those routinely observed in the optical or x-ray for GRBs discovered
pre-Swift , although it must be remembered that those observations were usually at half a day or
more post-trigger.

The early rapidly fading x-ray emission could have a variety of possible explanations [35],
including high-latitude emission from the fading burst [45], the interaction of the jet with the
surroundings—the classical afterglow emission produced by an external shock [46], or thermal
emission from a photosphere around the outflow [47] or from a hot cocoon associated with the
jet [48].

For almost all of the GRBs observed by Swift, the x-ray light curve derived from the BAT
data joins smoothly to that from the XRT. If the BAT and the XRT are initially detecting the
prompt emission from the jet, when this emission stops (for example the end of internal shocks),
we would continue to observe photons coming from regions of the jet which are off the line
of sight—the ‘curvature effect’ or ‘high-latitude emission’ [30, 34, 35, 45, 49, 50]. For such a
model emission at angles θ from the line of sight which are in excess of θ = �−1

jet will start to
dominate the observed emission. If the jet has uniform surface brightness, the observed x-ray
flux will fall as t−β−2 where the spectrum is ∝ ν−β. Thus this model predicts a relation such
that α − β = 2 for the early, rapidly declining part of the temporal decay. It is possible to get a
shallower decay if viewing a structured-jet off-axis [51] although the general trend is similar to
the standard high-latitude model. When considering high-latitude emission, the zero-time used
to calculate the decay index need not correspond to the trigger time if the light curve is dominated
by a later event, such as a large flare.

The possible contribution of standard afterglow emission as the jet interacts with its
surroundings complicates the comparison between models and observations. Indeed as afterglow
emission can begin within minutes of the burst, we are likely to be observing a mixture of emission
components, each contributing to the observed temporal and spectral indices. To disentangle the
relative contribution of emission from the central engine and that due to the afterglow, O’Brien
et al [30] systematically analysed the temporal and spectral properties of a large GRB sample
combining data from the BAT and XRT. The sample comprised 40 GRBs detected by Swift prior
to 1 October 2005 for which Swift slewed to point its narrow-field instruments within 10 min of
the burst trigger time. Of the 40 GRBs, 38 are long bursts.

In order to compare light curves for GRBs with different power law decay indices, O’Brien
et al [30] developed a procedure to fit light curves assuming there is a common intrinsic form to
the early x-ray light curve. An average x-ray decay curve expressed by log(time) as a function
of log(flux), τ(F ), and log(flux) as a function of log(time), F(τ), was derived by taking the sum
of scaled versions of each of the individual light curves, fi(ti), where ti is approximately the
time since the largest/latest peak in the BAT light curve. The data points were transformed to
normalized log(flux), Fi = log10(fi/fd), and log(time) delay values, τi = αd log10(ti − td) − τd.
Four decay parameters (subscript d) specify the transformation for each GRB: fd, the mean
prompt flux; td, the start of the decay; τd, a timescaling; and αd, a stretching or compression
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Figure 6. The composite x-ray light curve for 40 GRBs in [30] for which there
are BAT and early XRT data. The axis are normalized flux and transformed time
units. The average decay curve is shown as a solid curve and is well fit by an
exponential for τ0 � 1.7. It then relaxes to a power law with index α0 = 2.1,
shown as a dashed line. The shaded area bordered by dotted lines indicates the
range of the individual flux values as a function of time. In this transformed space,
those GRBs which show a gradual power law decline follow the average decay
curve until close to τh and then continue to decline as power laws. The light
curves for the majority of GRBs flatten above τh. About half of the GRBs exhibit
sporadic flaring during the initial decay and/or the late period.

of time. The best fit fd, td, αd and τd for each GRB were found using a least-squares iteration
procedure, excluding bright flares. The resultant composite light curve for the entire sample is
shown in figure 6.

Under the transformation, all the light curves conform to an approximately universal
behaviour with an initial exponential decline ∝ exp(−t/tc) followed by a power law decay
∝ t−α0 . The transition between the two decay phases occurs when the exponential and power
law functions and their first derivatives are equal, and is given for the average decay curve by
t0 = tcα0 (τ0 = 1.7). Adopting this transition, for each GRB the division between the prompt and
power law decay phases is defined to be τ0, corresponding to a prompt time Tp = 10(τ0+τd)/αd s.
This prompt time definition provides us with an alternative estimate of the duration of the prompt
phase for each burst which depends on the physical shape of the BAT+XRT light curve rather
than the sensitivity of the BAT. As shown in figure 7, Tp is comparable to T90 for many bursts,
but it can be considerably shorter or longer.

The average decay curve relaxes into a power law with a decay index α0 = 2.1, found by
linear regression on the average decay curve for τ0 < τ < 3.0. This power law fit is shown as
a dashed line in figure 6. The fitting procedure results in those GRBs which follow a fairly
continuous decay lying close to the power law. At τ ∼ 3, the average decay curve starts to rise
above the power law decay in the majority of bursts. This is the start of the late-emission hump,
which we define to start at τh = 3.5.
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Figure 7. Correlation of the duration of the prompt emission Tp, derived from
fitting to the average 0.3–10 keV decay curve derived from the combined
BAT+XRT data, with T90, derived from the BAT 15–150 keV data.

The initial temporal decay index for individual GRBs can be calculated by multiplying α0

by the best fit αd. GRBs with αd > 1 have decays steeper than average and those with αd < 1
shallower. The resultant α = α0αd are based on all the available data from both the BAT and XRT
and are expected to be a more robust estimate of the initial power law decay rate than fitting a
power law to a short section of light curve.

The values of α and β can be used to test the high latitude and afterglow models, where
β is taken as the average of the BAT and XRT spectral indices. The correlation between these
quantities is shown in figure 8. In principle, the relationship between the temporal decay index
and spectral index has two components such that α = ανβ + αf . The coefficient αν arises from the
redshift of the peak of the spectral distribution of the synchrotron emission as a function of time
and αf arises from the temporal decay in the peak flux value of the same spectral distribution.
The solid line in figure 8 shows the expected relationship for the high latitude model with αν = 1
and αf = 2. The dashed line shows the relationship expected for an afterglow model of a jet
expanding into a constant density medium observed at a frequency below the cooling break
(νx < νc) and before a jet break, with αν = 3/2 and αf = 0 [52]. If νx > νc then αν is unchanged
and αf = −0.5. This is plotted as a dot-dashed line in figure 8. All of the GRBs lie on or above
these afterglow lines. Very similar conclusions are reached if a wind afterglow model is adopted.

It is clear from figure 8 that the decay and spectral indices correlate well with the strength of
the late-emission hump. The bursts with the most significant humps do not have large x-ray flares
but they do have steep decays and straddle the high-latitude line [30]. The bursts with weaker
humps lie below the high-latitude line reaching down to the afterglow lines. The majority of GRBs
lie below the high-latitude prediction. For these, it is likely that we are seeing a combination of
high latitude prompt emission and conventional, pre-jet-break afterglow.

We note that those GRBs which decay more gradually are more likely to have an early
optical detection. Using the initial Swift UVOT V-band exposure to quantify the early optical
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Figure 8. Correlation of the decay index, α, with the spectral index, β, for the
40 GRBs contributing to figure 6, where β is the average of the spectral indices
from the BAT and XRT. Each GRB is plotted as an ellipse representing the 90%
confidence region. Blue indicates no late-emission hump, while red indicates a
strong late-emission hump (see [30] for details). Shades of green indicate areas
between these extremes. Open ellipses are GRBs for which there are no late-
time data. The solid line is the predicted relationship for high-latitude emission.
The dashed and dot-dashed lines are the predictions for an afterglow model of
a jet expanding into a constant density medium before a jet break, observing
in an energy band below and above the cooling break respectively. Almost all
of the GRBs lie between the model predictions suggesting most objects have a
contribution from several emission components.

brightness, for the GRBs in our sample with UVOT observations in the first 10 min, those with
α < 2 are four times more likely to have been optically detected.

3.3. The late-emission hump

Both the rapid-decay and classical afterglow models have difficulties explaining the late-emission
hump. Using the light-curve fitting procedure described above, for τ > 3.5, the maximum fluence
of the late-emission hump is commensurate with the prompt fluence [30], suggestive of some
kind of equipartition in energy between the emission phases. A number of models have been
proposed to explain the late-emission hump. It may be due to forward shock emission, which
is refreshed with energy either due to continued emission from the central engine or because
the ejecta has a range in initial Lorentz factor [34, 35], [53]–[56]. As the injection process adds
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Figure 9. The observed distribution in spectral indices for the prompt phase
(upper), steep decay phase (middle) and late-emission hump (lower). The spectral
indices for the late-emission hump are the most tightly clustered.

energy the decay does not simply resume the previous decay curve following the shallow phase
but rather shows a step (figures 1 and 2).

The spectral characteristics can be used to test possible relationships between emission
phases. Spectral index distributions for those GRBs with a steep decay phase taken from [30],
plus a few others, are shown in figure 9. The prompt (BAT) spectra have a mean spectral index of
0.61 ± 0.02 and standard deviation σ = 0.59. The steep decay phase has a steeper mean spectral
index of 1.12 ± 0.02 and σ = 0.6, while during the late-emission hump the mean spectral index
is 0.86 ± 0.03 and σ = 0.36. Interestingly, the late-emission hump exhibits a far narrower range
in spectral shape than the earlier phases. The narrowness of the spectral index distribution during
this phase argues in favour of a universal energy generation mechanism for this segment of the
light curve.

The late-emission hump spectra are, on average, harder than the steep-decline spectra,
supporting the concept of late-time shock refreshing. These two spectral indices are uncorrelated
(r = 0.19, P = 0.49). There is a much stronger correlation between the difference in the spectral
indices (steep-late hump) and the steep-decline spectral index (r = 0.85, P = 3 × 10−5). There
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is no correlation between the late-emission hump spectral index and the prompt spectral index
(r = 0.28, P = 0.3).

3.4. Late evolution and jet breaks

It has been previously shown that GRBs can show a wavelength-independent late break in their
optical and infrared light curves [57, 58]. If this break is associated with the jet slowing down,
such that θjet becomes larger than �−1

jet (the jet also starts to expand laterally), it can be used
to estimate the jet opening angle and hence the actual emitted energy. The derived θjet imply a
tightly clustered intrinsic, beaming-corrected, luminosity of ∼1051 erg, which, if confirmed over
a wider redshift range, could allow the use of GRBs as standard candles [59].

A significant number of the GRBs found by Swift are at high redshift. The mean redshift
of the Swift sample is 〈z〉 = 2.6, more than twice the mean redshift 〈z〉 = 1.2 pre-Swift. This
allows for a test of the idea of GRBs as standard candles, but also poses a challenge for Swift.
The late temporal breaks previously observed in the optical and infrared occur at a few days,
and will appear later, on average, for Swift due to the increased time dilation. By this time, the
x-ray count rates can be down by around five orders of magnitude, or more, from peak. In the
spectroscopy sample discussed above, only nine GRBs have sufficient counts to derive a spectral
index after the end of the late-emission hump. Of these, three have shown spectral steeping, five
have shown no evidence for spectral variation, and the remaining GRB is inconclusive.

The late temporal decay slope and the usual absence of clear spectral variability suggest
that this segment is associated with the normal afterglow phase seen in pre-Swift bursts at those
epochs. Currently it is unclear if any jet breaks have been detected in long bursts using data from
Swift (although see [60]). The discovery of the late-emission hump further complicates detection,
as the end of that phase could be mistaken for a jet break. Sato et al. [61] analysed Swift data
for three GRBs with extended light curves and known redshifts. They show that the bursts do
not show an achromatic break at the times expected, derived from an empirical relationship
between the peak in the energy spectrum of the prompt emission and the isotropic luminosity
[62]. If confirmed for a larger sample, this would indicate that the jet opening angle has a wider
dispersion than previously thought and hence GRBs have a wider range in intrinsic luminosity.

3.5. X-ray flares

The standard model for GRB afterglows, a spherical blastwave expanding into a uniform density
ambient medium, predicts smooth afterglow light curves. At least half of the GRBs observed
by Swift show x-ray flares [30]. Suggested models for the origin of flares include density
fluctuations in the surrounding medium into which the blastwave expands, structured jets, reverse
shocks, refreshed shocks and late-time central engine activity. These models predict relative
fluctuation amplitudes and timescales which can be used to rule out some scenarios for the origin
of the flares.

Three of the strongest x-ray flares, observed in GRB050502B, GRB050820A and
GRB060124, are shown in figure 10 [36]–[38]). These flares are quite late, and beyond the
burst duration measured by T90. It can be argued that the initial flux is a ‘pre-cursor’, in which
case the ‘flare’ is actually the burst. This is a distinct possibility, although we note that without a
flare all three light curves would still have been classified as that of a GRB. This illustrates the
uncertain definition of pre-cursors, bursts and flares.
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Figure 10. The 0.3–10 keV light curves for GRB050502B (black), GRB060124
(blue) and GRB050820A (red)—three GRBs with large x-ray flares. The fluxes
have been normalized to the start of the prompt phase using the flux scale for
GRB050820A. Observations of GRB050820A were interrupted by the passage
of Swift through the South Atlantic Anomaly.

Figure 11. The observed XRT count-rate light curve for GRB060124 (black;
left-hand side scale) and the (2–10 keV/0.2–2 keV) hardness ratio (red; right-
hand side scale). The spectrum hardens during each flaring episode.

The x-ray flares can show considerable sub-structure. Figure 11 shows a close-up view of
the large flare event in GRB060124. This large flare shows several episodes of flux increase
during which the spectrum rapidly hardens, followed by a more gradual softening as the flux
declines. The simplest explanation for the observed spectral behaviour is the movement of the
break energy to higher energies at the onset of the flare, which then falls to lower energies as
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Figure 12. The BAT+XRT flux light curves for the short bursts GRB050724
and GRB051221A. GRB050724 displays a steep decay and several flares.
GRB051221A is a very bright burst with a gradual initial decline, flux ∝ t−1, a
late-emission hump from a few thousand to ∼104 s, followed by another gradual
decline ∝ t−1.

the intensity decreases. This behaviour is consistent with that seen in gamma-ray flares observed
during the prompt phase [63, 64].

The rapid rise and fall in flux during these early x-ray flares is inconsistent with an
explanation involving interaction of the external jet shock with the surrounding medium. In
addition, where large energy output is seen it is likely due to the central engine being fed
matter as late times due to fragmentation of the progenitor [65] and/or a clumpy accretion flow
[66, 67]. The timescale over which large x-ray flares occur is mostly confined to the first hour
after the trigger, consistent with the previously known range in burst duration.

4. Short bursts

The discussion above is based mainly on the observed properties of long GRBs (i.e. T90 > 2 s).
Pre-Swift no accurate localizations had been obtained for short bursts, but now both Swift and
HETE-2 (High Energy Transient Explorer) have provided data which has allowed for the accurate
localization of several short bursts. From the first two which were localized, GRB050509B [27]
and GRB050709 [68], it was apparent that short bursts are associated with host galaxies that have
less active star formation than long bursts and that they are in lower density local environments
[27, 40, 69]. Follow-up observations have provided redshifts for most of the localized short bursts
and shown that they have systematically lower redshifts than the long bursts. The lower redshifts
and lower fluences imply lower luminosities, although as for long bursts determining the jet
opening angle is problematic [40, 70]. The long burst progenitor is thought to be a collapsar
(section 1) whereas the properties of the short bursts are consistent with a neutron star–neutron
star or neutron star–black hole binary progenitor. Short-lifetime massive stars (collapsars) are
very unlikely progenitors for the observed short bursts because of both the lack of recent star
formation in the host galaxies and the absence of a supernova which should be detectable at low
redshifts [69, 71].
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Despite the environmental and likely progenitor differences, the x-ray light curves of short
bursts are very similar to those of long bursts. In figure 12, the BAT+XRT light curves of
two well-studied short bursts display the full range of x-ray phenomena: steep decay and flares
(GRB050724); and gradual decay and late-emission hump (GRB051221A).To Swift GRB050724
is technically a long burst, but it would have appeared as a short burst to the BATSE instrument
[39]. The long duration of x-ray emission for the short bursts suggests that their central engines
can also be fuelled for many hours, possibly due to the same processes discussed above to explain
x-ray flares.

5. Conclusions

The Swift era has truly energized the study of GRBs. In its first year of operation, Swift has
provided the first accurate x-ray localization for a short burst, found the highest redshift and
highest x-ray luminosity source, GRB050904, observed large x-ray flares which can occur up
to an hour or more after the burst and observed a wide variety of temporal and spectral shapes
for GRBs. The early high-energy emission from most GRBs appears to be dominated by central
engine activity, which may continue low energy output for up to a day after the burst. This phase,
plus x-ray flares, are seen in both long and short bursts. In a significant minority of GRBs, the
early x-ray emission is consistent with a classical afterglow, where we see early interaction of
the jet with the circum-burst environment. The wealth of observational phenomena challenge
practically all of the theories as to how GRBs are powered, the nature of the relativistic jet and
the interaction between a GRB and its environment.
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