The Swift Gamma Ray Burst Mission

Neil Gehrels
NASA-GSFC

San Diego AAS Meeting
January 12, 2005
Swift Papers and Posters at AAS Meeting

Talks - Wednesday 10:00 am Town & Country

116.01 Gehrels Swift Science & Early Results
116.02 Nousek Swift Instruments & Ops

Talks - Thursday 10:00 am Pacific Salon 1

160.01 Barthelmy BAT Instrument
160.02 Burrows XRT Instrument
160.03 Roming UVOT Instrument

Posters - Wednesday

115.01 Gronwall UVOT On-orbit Calibration
115.02 Hullinger BAT Spectral Response
115.03 Ivanushkina UVOT & Gemini Studies of Dark GRBs
NASA MIDEX Mission selected in 1999

Primary science is to study gamma-ray bursts throughout the Universe

International hardware participation from UK and Italy

Launch on November 20, 2004
Motivations for Swift

Black Hole Birth

Ultrarelativistic Outflows

Early Universe Probes

GRB 970228 - BeppoSAX

The HST GRB Collaboration

host galaxy

GRB
Swift Designed to Answer GRB Key Questions

What causes GRBs?

What is the nature of subclasses?

What physics can be learned about BH formation and ultra-relativistic outflows?

What can GRBs tell us about the early universe?
Swift Instruments

Instruments

- Burst Alert Telescope (BAT)
 - New CdZnTe detectors
 - Most sensitive gamma-ray imager ever
- X-Ray Telescope (XRT)
 - Arcsecond GRB positions
 - CCD spectroscopy
- UV/Optical Telescope (UVOT)
 - Sub-arcsec positions
 - Grism spectroscopy
 - 24th mag sensitivity (1000 sec)
 - Finding chart for other observers

Spacecraft

- Autonomous re-pointing, 20 - 75 s
- Onboard and ground triggers
Mission Capabilities

Multiwavelength observations on all time scales

>100 GRBs per year of all types

BAT sensitivity 2 - 5 time better than BATSE

Arcsec positions & counterparts for 100’s GRBs

Rapid GRB notifications via GCN

Identification of host galaxies offsets

X-ray and UV/optical spectroscopy

Upload capability to slew to GRB and transients detected by other observatories
Swift Science - Supernova Connection

- **Supernova-GRB connection**
 - Connections between SNe Ic and GRB are emerging.
 - Swift's rapid subarcsec positions and lightcurve monitoring will allow SN searches on 100's GRBs.
 - Questions addressed:
 - What fraction and what kinds of GRBs have underlying SN?
 - What fraction and what kinds of SN have accompanying GRBs?

SN1998bw - GRB 980425
GRB 980326
Swift Science - Classes of GRBs

- **Swift sensitive to**
 - Normal long GRBs
 - Short GRBs
 - X-Ray Flashes ♦
 - Weak GRBs
 - Ultra-long GRBs

- **GRBs subclasses - example: short GRBs**
 - Not understood. No counterparts detected. Appears to be a separate class.
 - Non-detection of GRB 020531 indicates afterglow is weak or rapidly declining.
 - Swift will perform rapid follow-up observations of ~100 short GRBs
Swift Science - Early Universe

- **Early Universe**
 - GRBs are the brightest events in universe.
 - Afterglow is detectable to $z \sim 15$ by Swift (3 to 15 per year at $z > 10$)
 - Topics addressed:
 - Epoch of first stars (GRB may be unique probe of Pop III stars)
 - Star formation history
 - Re-ionization of IGM
 - Metallicity history
 - Dust and gas content of early galaxies
 - Large-scale structure of universe

Lamb & Reichart (2000)
Swift Observatory in Goddard Clean Room
Arrival at KSC
Swift Observatory at KSC
Swift Activation

• Following launch, 1.5 months activation and 3 months verification. Observatory will be fully operational on April 5, 2005.

• Public data and GI program start after verification phase.

• Any GRB reliably detected during verification will be distributed on GCN (non-realtime, after BAT-team checking).

• Swift follow-up team coordinated by K. Hurley

• EPO team coordinated by L. Cominsky
• 9 GRBs detected since Dec. 17

• Large GRB detected on Dec. 19 (GRB 041219)

• XRT pointed at GRB 041223 via ground command at ~4.5 hours. Afterglow detected.

• Giant flare detected from soft gamma repeater SGR 1806-20 on Dec. 27

• BAT is performing sensitive monitoring of hard x-ray sky
Light Curves of BAT GRBs

- detected by other gamma-ray instrument
- slewed to and imaged by XRT
- detected by ground-based optical/IR
GRB 041219

- Long duration GRB lasting 500 s
- Fluence of $\sim 10^{-4}$ erg cm$^{-2}$
- Fluence in top 1% of CGRO/BATSE bursts
- Duration in top 2% of CGRO BATSE bursts
- Imaged by INTEGRAL & Swift

- IR fast-fading counterpart ("flash") discovered at early time
- Real-time (RAPTOR) optical detection
- Radio counterpart
- Campaign underway to determine host and redshift
GRB 041223
First XRT GRB Afterglow

J-Band Image with XRT Position

BAT position

48"

15"

optical afterglow

GCN 2901

pipeline
GRB 041223 Decay Lightcurve

Fluence (erg cm$^{-2}$ s$^{-1}$)

(γ-ray prompt)

(early x-ray guess)

F ∼ t$^{-1.7}$

(x-ray afterglow)

C(t) ∝ t$^{-1.72±0.20}$

Time (seconds)

Count rate (cts/s)

Time since burst (s)
Giant Flare from SGR 1806-20

SGRs are galactic neutron stars with huge magnetic fields (~10^{15} G) that have occasional active periods and outbursts.

SGR 1806-20 discovered in 1986. Four known SGRs

Detected on Dec. 27, 2004 by all non-occulted gamma-ray detectors in space

Huge main peak lasting 0.5 sec followed by 400 sec of pulsations

Estimate (Boggs et al. GCN 2936) puts fluence greater than ~0.1 erg cm$^{-2}$, 1-2 orders of magnitude greater than SGR 1900+14 1998 and SGR 0526-66 1979 flares.

Radio transient detected. Slightly extended source. Polarization detected.
BAT Detection of 7.6 sec Pulsations
Swift Non-GRB Capabilities

Hard x-ray survey of sky

Transient monitoring

Multiwavelength response to transients detected by others