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Outline

Gamma-ray bursts (GRBs)
Swift Burst Alert Telescope (BAT)
Observed GRB distributions

(The 379 BAT GRB catalog)

Probing intrinsic distribution
— The BAT trigger simulator

GRB rate

— Implication on the high-redshift star-formation
history

Summary



Intro Swift Catalog Trigger Simulation GRBrate Summary

What are gamma-ray bursts?

* Short pulses in gamma rays
— Diverse light curve shapes
— Afterglows in x rays, optical, and radio
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Intro Swift Catalog Trigger Simulation GRBrate Summary

What are gamma-ray bursts?

* Short pulses in gamma rays
— Diverse light curve shapes
— Afterglows in x rays, optical, and radio

* Extremely bright

llllllllllllll

* Visible out to very high redshift

— Redshift range:
0.03-9.38

Tme in Seconds
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Intro Swift Catalog Trigger Simulation GRB rate Summary

What are gamma-ray bursts?

Short pulses in gamma rays
— Diverse light curve shapes

— Afterglows in x rays, optical, and radio

Extremely bright

Visible out to very high redshift
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Intro Swift Catalog Trigger Simulation GRBrate Summary

What are gamma-ray bursts?

Long GRBs Short GRBs

* Deaths of massive Stars * Compact-object mergers

e Supernovae * Black holes

* Black holes * Neutron stars

e Acceleration of high-energy * Gravitational wave
particles

Figure Credit: NASA/Swift Mission Multimedia




UV/Optical
Telescope
(UVOT)

: | ; . : '} ¥ . ( X-Ray
: 2 S . , Telescope
Burst Alert , (XRT)

Telescope
(BAT)



Burst Alert
Telescope
(BAT)




A. Rate trigger:
‘Stage 1: Rate trigger
Stage 2: Image threshold
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A. Rate trigger: _ B. Image trigger:
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A. Rate trigger: ,, _ B. Image trigger:

GRB141121a
SWIFT BAT 2014 Nov 21

Exposure: 189 s

‘Stage 1: Rate trigger ;  BAT Error
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Stage 2: Image threshold
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Intro Swift Catalog Trigger Simulation GRBrate Summary

10 Years of Swift i

2005 2012
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Chart Credit: Neil Gehrels’ presentation ‘
Figure credit: PSU webpage
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® Unidentified Galaxies ® Seyfert Galaxies ® CVs/Stars ® X—ray Binaries
® Galactic ® Galaxy Clusters ® Beamed AGN Pulsars/SNR

Cake Credit: Judith Racusin
Baumgartner et al. 2013




Intro Swift Catalog Trigger Simulation GRBrate Summary

~ 11 20 Years of Swift |

2005 2012

-

Chart Credit: Neil Gehrels’ presentation V, ‘ =\

Figure credit: PSU webpage
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Intro Swift Catalog Trigger Simulation GRB rate Summary

1.

Fraction of BAT Good Time

0
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BAT Observing Time

e ~ 11+-1% deadtime for the South Atlantic Anomaly (SAA)
e ~ 11+-1% due to slewing
0

0 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Year




Intro Swift Catalog Trigger Simulation GRB rate Summary

Swift GRBs to date: |

~ 11 Years after Launch

986 GRBs till now (GRB150911A)
— About 2 GRBs per weak

e 326 GRBs have redshift measurements
 Complete results will be in
the 3@ BAT GRB catalog

B 2

3.
o

90 short GRBs Figure credit: PSU webpage

896 Iong!RBs

* ~ 13 sGRB with E.E

Cake Credit: Judith Racusin



Number of GRBs
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Number of GRBs
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Fig credit: Taka’s presentation



Burst Durations
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Distribution is instrument
dependent




Number of GRBs

Burst Durations
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Number of GRBs

Burst Durations
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Spectral Fits

Following the 2" BAT GRB
catalog (Sakamoto et al. 2011)

PL

f(E) _ KPL E (xPL
0\ 50 keV

OlpPL

(a) simple power law (PL)
(b) cutoff power law (CPL)
Choose CPL If Ax>> 6

Additional criteria for an Photon Energy
acceptable spectral fit
CPL

Photon Flux

Photon Flux

Epeak

C

E \* _EQ + oy
E) = KCPL
HE) = Kso (50 keV) P ( Epeak )

Photon Energy



Spectral Fits — Simple Power Law

Following the 2"¢ BAT GRB
catalog (Sakamoto et al. 2011)

(a) simple power law (PL)
(b) cutoff power law (CPL)
Choose CPL If Ax?>> 6

Additional criteria for an
acceptable spectral fit

767 GRBs are well-fitted
with simple power law.

500

GRBs better-fitted by simple PL model
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Spectral Fits — Simple Power Law

GRBs better-fitted by simple PL model

* Following the 2" BAT GRB = ail Gros

@ 400/ — All GRBs (lower limit)

catalog (Sakamoto et al. 2011) 2 300=2 All GRBS (upper limit)
* (a) simple power law (PL) £
S 100¢
=2
(b) cutoff power law (CPL)  op——sz——ir——n ooy
450 ; :
* Choose CPL If Ax*> 6 1, 400][= Long GRBs

2 350= Long GRBs (lower limit)
O 300/|— Long GRBs (upper limit)

e Additional criteria for an 5 250,

5 200}
acceptable spectral fit £ 159
Z 50
e 767 GRBs are well-fitted %o =35 30 -25 -20 -15 -10 -05
. . 30 ‘ ‘
with simple power law. 2 o= Short GRBs -
B ““ll= Short GRBs (lower limit)
O 20— Short GRBs (upper limit)
In BAT sample, short GRBs are [
only slightly harder than long [
GRBS' —04.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

Photon index from simple PL model ap;,



Spectral Fits — Cutoff Power Law

Following the 2" BAT GRB
catalog (Sakamoto et al. 2011)

(a) simple power law (PL)
(b) cutoff power law (CPL)
Choose CPL If Ax>> 6

Additional criteria for an
acceptable spectrum

767 GRBs are well-fitted
with simple power law.



Spectral Fits — Cutoff Power Law

Following the 2" BAT GRB
catalog (Sakamoto et al. 2011)

(a) simple power law (PL)
(b) cutoff power law (CPL)
Choose CPL If Ax>> 6

Additional criteria for an
acceptable spectrum

767 GRBs are well-fitted
with simple power law.

76 GRBs are fitted better
with cutoff power law



Spectral Fits — Cutoff Power Law

Following the 2"¢ BAT GRB
catalog (Sakamoto et al. 2011)

(a) simple power law (PL)
(b) cutoff power law (CPL)
Choose CPL If Ax?>> 6

Additional criteria for an
acceptable spectrum

767 GRBs are well-fitted
with simple power law.

76 GRBs are fitted better
with cutoff power law

(all long GRBs)
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Spectral Fits — Cutoff Power Law

GRBs better-fitted by simple PL model
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Spectral Fits — Cutoff Power Law

500 ‘ GRBs better-fitted by simple PL model
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Spectral Fits — Cutoff Power Law

Following the 2"¢ BAT GRB
catalog (Sakamoto et al. 2011)

(a) simple power law (PL)
(b) cutoff power law (CPL)
Choose CPL If Ax?>> 6

Additional criteria for an
acceptable spectrum

767 GRBs are well-fitted
with simple power law.

76 GRBs are fitted better
with cutoff power law

(all long GRBs)
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Spectral Fits — Cutoff Power Law
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Spectral Fits — Cutoff Power Law

_GRBs better-fitted by CPL model
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Spectral Fits — Cutoff Power Law

_GRBs better-fitted by CPL model
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Intro Swift Catalog Trigger Simulation GRB rate Summary

BAT Sensitivity on GRB detections
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Intro Swift Catalog Trigger Simulation GRB rate Summary

S(50-100 keV)/S(25-50 keV)

Short-hard vs long-soft?

1 R ——
|4+ CPL fit
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Intro Swift Catalog Trigger Simulation GRB rate Summary

Redshift and Luminosity Distribution

Thanks to the ground-based follow-up campaign
Redshift list compiled by Kevin Chen (U of California, Berkeley)

Info from papers, GCNs, online lists (e.g., GRBOX by Dan Perley)

70 . . .
* Spectroscopic: 65%
60| * Photo-z: 9%
D 50} * Host galaxy spectrum: 28%.
% 20 Host galaxy photo-z: 3%
« 40|
930
£
> 20
10
00 2 4 6 8 10
Redshift z

Average Luminosity

2%

(in the Observed 15-150 keV) in T100 ‘[erg/s]
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Average Luminosity in T100 [erg/s]




Intro Swift Catalog Trigger Simulation GRB rate Summary

Redshift and Luminosity Distribution

70 : I .
* Spectroscopic: 65%
60y * Photo-z: 9%
R 50} * Host galaxy spectrum: 28%
% 20 Host galaxy photo-z: 3%
©
8 30
£
2 20
10
00 2 4 6 8 10
Redshift z

Average Luminosity
(in the Observed 15-150 keV) in T100 ‘[erg/s]

2%

1047 1048 1049 1050 1051 1052 1053
Average Luminosity in T100 [erg/s]




Intro Swift Catalog Trigger Simulation GRB rate Summary

Finding intrinsic GRB rate:
A naive theorist approach.....

>

Observation - Intrinsic

However...

Number of GRB

N\
N
N

.u

BAT detection threshold

. J—

)

e.g., Fynbo et al. 2009 Luminosity Function




Intro Swift Catalog Trigger Simulation GRB rate Summary

Trigger Algorithm of the BAT

1. Rate trigger followed by image threshold:
e > 500 different trigger criteria
e Each trigger criterion has different
e energy bands, time periods, signal-to-noise thresholds, etc
e Image threshold: lization

Triggered!

(Sigmal-to-noise ratio > 6.5)

Fiancee Elddsese Fiance Elanse

kgrourBatkgrot Create Image

e Checkimage threshold

* Signal-to-noise ratio using image background
 Localization

« Known souce? Check with on-board sky catalog

2. Image trigger: Creating images every ~ min to look for bursts



Intro Swift Catalog Trigger Simulation GRB rate Summary

Using Swift’s Data to Probe
The Intrinsic GRB Rate

* Difficulties of reconstructing the intrinsic rate
from the observed rate:

— Swift is not a single-threshold telescope
— The selection bias from observations

e Goal of this work:

— Search for the intrinsic rate by simulating the
complex Swift trigger algorithm

— Trigger simulator: Generally follows the same
process as the actual BAT trigger algorithm
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Sensitivity Comparisons

e Grid ID: ID name on the detector’s plane, related to incoming angle
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Real BAT-detected GRBs (Sakamoto et al. 2009):
e Total triggered bursts: 324

* 303 rate trigger

* 21 image trigger

Our simulations:

Total triggered bursts: 1400
1347 rate trigger
53 image trigger
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General Approach:
A Semi-Monte-Carlo Simulation

Run Match with

through all actual Swift
Swift trigger detected

criteria GRB sample

Initial guess Create

of GRB simulated
properties lightcurves

e Redshift and Luminosity distributions
(functional form from Wanderman et al. 2010)
e Spectral distribution (Epeak, alpha, beta of the BAND function)

* Pulse shapes (from real Swift observations)
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General Approach:
A Semi-Monte-Carlo Simulation

Run Match with

through all actual Swift
Swift trigger detected

criteria GRB sample

Initial guess Create

of GRB simulated
properties lightcurves

* Different burst incident angles
e Different background levels
e Option of including spectral (Epeak) evolution
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General Approach:
A Semi-Monte-Carlo Simulation

Run Match with

through all actual Swift
Swift trigger detected

criteria GRB sample

Initial guess Create

of GRB simulated
properties lightcurves

* Rate triggers
* Image triggers
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General Approach:
A Semi-Monte-Carlo Simulation

Run Match with

through all actual Swift
Swift trigger detected

criteria GRB sample

Initial guess Create

of GRB simulated
properties lightcurves

Redshift sample (Fynbo et al. 2009)

Peak-flux sample (Sakamoto et al. 2011)

Swift’s detection per year (e.g., Gehrels et al. 2012)
Epeak, Eiso (e.g., Butler et al. 2007, 2010)
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General Approach:
A Semi-Monte-Carlo Simulation

If does not match well ®

Run Match with

through all actual Swift
Swift trigger detected

criteria GRB sample

Initial guess Create
of GRB simulated

properties lightcurves
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General Approach:
A Semi-Monte-Carlo Simulation

If does not match well ®

> 5700 Years

Match with

through all actual Swift
Swift trigger detected

criteria GRB sample

Initial guess Create
of GRB simulated
properties lightcurves
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General Approach:
A Semi-Monte-Carlo Simulation

If does not match well ®

Run Match with

through all actual Swift
Swift trigger detected

criteria GRB sample

Initial guess Create
of GRB simulated

properties lightcurves
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Normalized Number of GRBs

Results from the Best-Fit Sample:
The Redshift and Peak-flux Distributions

Peak Flux Distribution of

Redshift Distribution of

_the Mock-Triggered Bursts

the Mock-Triggered Bursts " e o Swift GRBs (Sakamoto et al. 2011)
. « Swift GRBs (Fynbo et al. 2009)|| & 0.5 Mock-Triggered GRBs
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The GRB Rate
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10° |

GRB Rate [Gpc™® yr ']
=
OO

The GRB Rate

10° |

10" |

This Work

SFR shape from
Hopkins & Beacom (2006)

2 4 6 8
Redshift z

10

Lien et al. (2014)




Intro Swift Catalog Trigger Simulation GRBrate Summary

GRB Rate [Gpc™® yr ']

The GRB Rate
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Possibilities:
1. Higher star-formation rate in the early universe

2. The ratio of GRB/SN evolves (e.g., woosley & Heger 2012)
3. Luminosity evolution (eg., virgili et al. 2011)

This Work

SFR shape from
et al. (2008)

SFR shape from
Hopkins & Beacom (2006) o -

GRB Rate [Gpc™® vy

0 2 4 6 8 10
Redshift z

Lien et al. (2014)
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Exploring Uncertainties
with I\/Iachlne Learnmg Algorlthm

Real Data

[ posterlor sample ; : : ;
35H — maxhkellhood B A e AL ASA —

L o v s s S et

Redshift Graff et al. (2015)
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Exploring Uncertainties
with I\/Iachlne Learnmg Algorlthm

Real Data

[ posterlorsample ; : : ;
35H — maxhkellhood B A e -
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Redshift Graff et al. (2015)
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Summary

 GRBs are important in many aspects of
astrophysics and cosmology:

— Star-formation history, Stellar evolution, supernovae,
black holes, gravitational waves, high-energy particle
accelerations

* Understanding instrumental biases is important

for probing intrinsic GRB characteristics.

 Measurements of GRB redshift (particularly at
high redshift) and broadband spectra are crucial.
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black holes, gravitational waves, high-energy particle
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* Understanding instrumental biases is important

for probing intrinsic GRB characteristics.

 Measurements of GRB redshift (particularly at
high redshift) and broadband spectra are crucial.
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GRBs, Supernovae, and Star Formation

* Long GRBs (T90 > 2 sec)

— Related to core-collapse supernovae (Type Ibc)
— Related to the death of massive stars

* Long GRBs as probes

of star formation
e Particularly crucial

at high redshift T 0.1L

(e.g., Ciardi & Leob 2000, & [
Tanviretal. 2012) - 102

>~ =

* Important to L

measure long GRB & 3L

rate (e.g., Butler et al. 2010;
Wanderman et al. 2010; Yuksel
et al. 2008)

t [Gyr]

4

Verma et al. (2007)

x LAE: Ota et al. (2008)

107

1
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5 6 7 8
Yuksel et al. (2008)
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GRBs, Supernovae, and Star Formation
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Swift GRBs to date

e 926 GRBs till now.
* In this presentation: 919 GRBs till GRB141109B
e 314 have redshift measurements

Short GRB Long GRB
81 short GRBs

600
Time [s]

Short GRB with
Extended emission

Ultra-Long GRB

0.15
T
@
5 o010
2
s
3
o
0.05
-0.05
=200 ~100 0 200 300
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Swift GRBs to date:

10 Years after Launch

* 926 GRBs till now
— About 2 GRBs per weak

314 GRBs have redshift measurements
 Complete results will be in
the 39 BAT GRB catalog

Cake Credit: Judith Racusin
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Swift GRBs to date:

10 Years after Launch

926 GRBs till now
— About 2 GRBs per weak

314 GRBs have redshift measurements
Complete results will be in
the 39 BAT GRB catalog

4 . N

Figure credit: PSU webpage

Cake Credit: Judith Racusin




Burst Durations
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T90: A duration encloses 90% of GRB photons
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Burst Durations

Number of GRBs
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BAT selection effect on GRB spectra

A

CPL

Epeak

Photon Flux

Photon Energy
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BAT selection effect on GRB spectra

E,... Estimated from the E_, -Estimator
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BAT selection effect on GRB spectra

E,... Estimated from the E_, -Estimator
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Spectral Fits
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Burst Duration vs Spectrum
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Sensitivity Comparisons

e Grid ID: ID name on the detector’s plane, related to incoming angle

Real BAT-Detected GRBs;
1-s peak flux from best-model fit
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Real BAT-detected GRBs (2005-2009):
e Total triggered bursts: 409

* 338 rate trigger

* 71 image trigger
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Our simulations:

e Total triggered bursts: 1400
* 1347 rate trigger

* 53 image trigger
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Summary

Adopting the complex BAT-trigger algorithm improve the
sensitivity and hence more dim (low-flux) bursts are
needed in the intrinsic sample.

Need more bursts from high redshift to create a good
match with the observations.

Very high GRB rate at large redshift, unless luminosity
evolution is considered.

It seems like some kind of relation between bursts’ energy
output (e.g., Lpeak) and spectral parameters (e.g., Epeak) is
needed to generate good match with the observations.

The 379 BAT GRB catalog is coming soon! Suggestions
welcome!




