The Swift Gamma-Ray Burst Mission Italian site U.K. site

The Swift Gamma-Ray Burst Mission

Swift satellite artists conception Gamma-ray bursts (GRBs) are the most powerful explosions the Universe has seen since the Big Bang. They occur approximately once per day and are brief, but intense, flashes of gamma radiation. They come from all different directions of the sky and last from a few milliseconds to a few hundred seconds. So far scientists do not know what causes them. Do they signal the birth of a black hole in a massive stellar explosion? Are they the product of the collision of two neutron stars? Or is it some other exotic phenomenon that causes these bursts?

With Swift, a NASA mission with international participation, scientists have a tool dedicated to answering these questions and solving the gamma-ray burst mystery. Its three instruments give scientists the ability to scrutinize gamma-ray bursts like never before. Within seconds of detecting a burst, Swift relays its location to ground stations, allowing both ground-based and space-based telescopes around the world the opportunity to observe the burst's afterglow. Swift is part of NASA's medium explorer (MIDEX) program and was launched into a low-Earth orbit on a Delta 7320 rocket on November 20, 2004. The Principal Investigator is Dr. Neil Gehrels (NASA-GSFC).

NASA's Swift Reveals a Black Hole Bull's-eye
Rings of X-ray light centered on V404 Cygni, a binary system containing an erupting black hole (dot at center), were imaged by the X-ray Telescope aboard NASA's Swift satellite from June 30 to July 4. A narrow gap splits the middle ring in two. Color indicates the energy of the X-rays, with red representing the lowest (800 to 1,500 electron volts, eV), green for medium (1,500 to 2,500 eV), and the most energetic (2,500 to 5,000 eV) shown in blue. For comparison, visible light has energies ranging from about 2 to 3 eV. The dark lines running diagonally through the image are artifacts of the imaging system.
Rings of X-ray light centered on V404 Cygni, a binary system containing an erupting black hole (dot at center), were imaged by the X-ray Telescope aboard NASA's Swift satellite from June 30 to July 4. A narrow gap splits the middle ring in two. Color indicates the energy of the X-rays, with red representing the lowest (800 to 1,500 electron volts, eV), green for medium (1,500 to 2,500 eV), and the most energetic (2,500 to 5,000 eV) shown in blue. For comparison, visible light has energies ranging from about 2 to 3 eV. The dark lines running diagonally through the image are artifacts of the imaging system. Credits: Andrew Beardmore (Univ. of Leicester) and NASA/Swift (Read More)

Swift Operations Status

All Swift systems are operating normally.

Latest Swift News

Jul 23, 2015

Biggest Explosions in the Universe Powered by Strongest Magnets

GRBs usually only last a few seconds, but in very rare cases the gamma rays continue for hours. One such ultra-long duration GRB was picked up by the Swift satellite on 9 December 2011 and named GRB 111209A. It was both one of the longest and brightest GRBs ever observed. In the favoured scenario of a massive star collapse (sometimes known as a collapsar) the decay of radioactive nickel-56 formed in the GRB explosion powers a supernova emission, peaking in the optical several weeks after the GRB. But in the case of GRB 111209A ground-based observations showed that this could not be the case. Follow-up observations from ESO’s La Silla and Paranal Observatories in Chile have for the first time demonstrated a link between this very long-lasting burst of gamma rays and an unusually bright supernova explosion. The results show that the supernova was not driven by radioactive decay, as expected, but was instead powered by the decaying super-strong magnetic fields around an exotic object called a magnetar. Magnetars are thought to be the most strongly magnetised objects in the known Universe. This is the first time that such an unambiguous connection between a GRB, a supernova and a magnetar has been possible.
+ Learn More

Jul 9, 2015

NASA's Swift Reveals a Black Hole Bull's-eye

What looks like a shooting target is actually an image of nested rings of X-ray light centered on an erupting black hole. On June 15, NASA's Swift satellite detected the start of a new outburst from V404 Cygni, where a black hole and a sun-like star orbit each other. Since then, astronomers around the world have been monitoring the ongoing light show.
+ Learn More

Jun 30, 2015

NASA Missions Monitor a Waking Black Hole

NASA's Swift satellite detected a rising tide of high-energy X-rays from the constellation Cygnus on June 15, just before 2:32 p.m. EDT. About 10 minutes later, the Japanese experiment on the International Space Station called the Monitor of All-sky X-ray Image (MAXI) also picked up the flare.
+ Learn More

» Swift Newsletter
» Signup for the Newsletter

Other News

If you're a Swift Team member looking for the Team site, try:

NOTE: You will need your Team username and password to access this site.