The Swift Gamma-Ray Burst Mission Italian site U.K. site

News

Oct 16, 2017

NASA's Swift Catches First Ultraviolet Light from a Gravitational-Wave Event

Today the advanced LIGO and Virgo gravitational wave observatories announced the discovery of a new type of gravitational wave signal, likely caused by the collision of two neutron stars. The gravitational wave event occurred on 2017 August 17th, and was accompanied by a gamma-ray burst of short duration. Astronomers across the world began searching for the precise location of this event, quickly tracking it down to the nearby galaxy NGC 4993. Once pin-pointed, the Swift satellite quickly maneuvered to look at the object with its X-ray and UV/optical telescopes. The spacecraft saw no X-rays - a surprise for an event that produced higher-energy gamma rays. Instead, it found a bright and quickly fading flash of ultraviolet (UV) light. This bright UV signal was unexpected and revealed unprecedented details about the aftermath of the collision. The short-lived UV pulse likely came from material blown away by the short-lived disk of debris that powered the gamma-ray burst. The rapid fading of the UV signal suggests that this outflow was expanding with a velocity close to a tenth of the speed of light. The results of the Swift observations were published today on the journal Science. The discovery of this powerful wind was only possible using light, which is why combining gravitational waves and light in what we call 'multi-messenger astronomy' is so important.
+Read More

Oct 4, 2017

Swift Observations of the Enigmatic Tabby's Star Reveal a Cloud of Dust

KIC 8462852, also known as Boyajian's Star, or Tabby's Star, is one of the most mysterious stellar objects. The star has experienced unusual dips in brightness, up to 20 percent over a matter of days, and undergoes much subtler but longer-term enigmatic dimming trends. None of this behavior is expected for a normal star slightly more massive than the Sun. Speculations have included the idea that the star swallowed a planet and that it is unstable. A more imaginative theory involves an advanced civilization, which could be harvesting energy from the star and causing its brightness to decrease. A new study by Huan Meng and collaborators using NASA's Swift and Spitzer missions reveals less dimming in the infrared light from the star than in its ultraviolet light, suggesting that the cause of the dimming over long periods is likely an uneven dust cloud moving around the star.
+Read More

Sep 27, 2017

Swift Reveals Black Holes with Ravenous Appetites

For decades, astronomers have tried to pin down why two of the most common types of active galaxies, known as Type I and Type II galaxies, appear different when observed from Earth. The leading theory, known as the unified model, explains that the central black holes of Type I and Type II galaxies have the same fundamental structure, but appear different solely because the galaxies point toward Earth at different angles. An international team of astronomers tested this model by studying over 800 active galaxies detected by the Burst Alert Telescope on-board Swift. Their results, published in the journal Nature, suggest that Type I and Type II galaxies do not just appear different--they are, in fact, very different from each other. Black holes in Type I galaxies consumes matter at a much higher rate and are therefore more efficient at emitting energy.
+Read More

Sep 18, 2017

Swift GI Cycle 14 Deadline Extended to September 28, 2017

To give more time to proposers who are without power because of Hurricane Irma, the due date of the Swift GI Cycle 14 proposals is delayed by 1 week. The new Phase-1 proposals are due by September 28, 2017, 4:30 PM Eastern time via the Swift ARK/RPS web page.

Aug 16, 2017

Swift Cycle 14 proposals due September 21, 2017, 4:30 PM EDT

For details on the Swift Cycle 14 program elements and how to submit proposals, please see the Swift Cycle 14 information page and the Cycle 14 FAQ.

Jul 26, 2017

Gamma-ray Burst Captured in Unprecedented Detail

Gamma-ray bursts are among the most energetic and explosive events in the universe. They are also short-lived, lasting from a few milliseconds to about a minute. This has made it tough for astronomers to observe a gamma-ray burst in detail. Using a wide array of ground- and space-based telescopes, including NASA's Swift and Fermi satellites, an international team led by Eleonora Troja constructed one of the most detailed descriptions of a gamma-ray burst to date. The event, named GRB 160625B, revealed key details about the initial "prompt" phase of gamma-ray bursts and the evolution of the large jets of matter and energy that form as a result of the burst. The group's findings are published in the July 27, 2017 issue of the journal Nature.
+Read More

May 4, 2017

Swift Peers Into the Inner Regions of an Accreting Supermassive Black Hole

In early 2016 NASA's Swift mission started an intensive high-cadence monitoring campaign of NGC 4151, one of the nearest galaxies to contain an actively accreting supermassive black hole at its center. Swift looked at the galaxy's nucleus every 6 hours for 69 consecutive days in order to constrain its temporal variability at X-ray, ultraviolet and optical energies. This technique allows Swift to probe the central regions of AGN in which the bulk of the luminosity is produced and emitted. The results of these observations were published today on the Astrophysical Journal. The study, led by researcher Rick Edelson, found that the Swift data rule out the standard reprocessing model for AGN and instead favor the presence of two separate reprocessings: first, emission from the corona illuminates an extreme-UV-emitting toroidal component that shields the disk from the corona; this then heats the extreme-UV component, which illuminates the disk and drives its variability.

Apr 14, 2017

Asteroid Named After Swift Scientist

Thanks to its unique capabilities, NASA's Swift mission is uniquely poised to characterize the activity and evolution of comets, and active asteroids. Swift's sensitivity at ultraviolet wavelenghts allows scientists to detect hydroxyl, an important tracer of cometary activity formed when water molecules are destroyed by solar UV light. Astronomer Dennis Bodewits, a research scientist at the University of Maryland, uses Swift to follow several Oort Cloud comets and over 15 different asteroids as they cruise through our Solar System. Thanks to extensive Swift observing campaigns, Bodewits obtained spectacular images of the comet Siding Spring during its Mars flyby and spotted a rare and violent collision between two asteroids. These results were honored by the asteroid (10033) Bodewits, named after the lead author of the Swift studies. The announcement was made during the third 'Asteroids, Comets, and Meteroids' meeting, held in Montevideo, Uruguay.
+ Read More

Apr 4, 2017

Swift Discovers a New Cosmic Blast from the Young Universe

On September 23, 2012 NASA's Swift satellite discovered a bright flash of gamma-rays produced by the explosion of a star. The event, dubbed GRB120923A, was rapidly localized by the X-ray Telescope on-aboard Swift, and later observed with a wide array of optical and infrared telescopes. An international team of astronomers, led by Nial Tanvir at the University of Leicester, found that the explosion happened when the Universe was only 670 million years old, less than five percent of its present age. Only two of the more than 1,000 gamma-ray bursts seen with Swift have earlier measured ages. Gamma-ray bursts represent a powerful tracer of star-formation in the early Universe, and are the only known signature of primordial stars at such distances.
+ Read More

Mar 21, 2017

NASA's Swift Mission Maps a Star's 'Death Spiral' into a Black Hole

Some 290 million years ago, a star much like the sun wandered too close to the central black hole of its galaxy. Intense tides tore the star apart, which produced an eruption of optical, ultraviolet and X-ray light that first reached Earth in 2014. Now, a team of scientists using observations from NASA's Swift satellite have mapped out how and where these different wavelengths were produced in the event, named ASASSN-14li, as the shattered star's debris circled the black hole.
+ Read More

Feb 06, 2017

Neil Gehrels (1952-2017)

Dr. Neil Gehrels, Principal Investigator of the Swift Mission, passed away this morning surrounded by his family. Neil had been battling pancreatic cancer and his health declined rapidly over the past several weeks. Neil was the Chief of the Astroparticle Physics Laboratory at NASA's Goddard Space Flight Center, a member of the National Academy of Sciences, of the American Academy of Arts and Sciences, and a honorary fellow of the Royal Astronomical Society. Neil's work primarily focused on time domain astronomy, including gamma-ray bursts, supernovae, tidal disruption events and gravitational waves.
+ Read More

Jan 23, 2017

Swift Cycle 13 Results

Swift Cycle 13 Recommended Targets and Proposals have been posted.

Nov 10, 2016

NASA Space Telescopes Pinpoint Elusive Brown Dwarf

In a first-of-its-kind collaboration, NASA's Spitzer and Swift space telescopes joined forces to observe a microlensing event, when a distant star brightens due to the gravitational field of at least one foreground cosmic object. This technique is useful for finding low-mass bodies orbiting stars, such as planets. In this case, the observations revealed a brown dwarf.
+ Read More

Oct 27, 2016

NASA's Swift and Kepler Missions Harvest a Passel of 'Pumpkin' Stars

Astronomers using observations from NASA's Swift and Kepler missions have discovered a batch of rapidly spinning stars that produce X-rays at more than 100 times the peak levels ever seen from the sun. The stars, which spin so fast they've been squashed into pumpkin-like shapes, are thought to be the result of close binary systems where two Sun-like stars merge.
+ Read More

Oct 11, 2016

Swift Satellite Helps Discover Surprising Sunlike Activity in a Nearby Star

Proxima Centauri, the closest star to the Sun, seems nothing like our Sun. It's a small, cool, red dwarf star only one-tenth as massive and one-thousandth as luminous as the Sun. However, new research using data from Swift and other facilities shows that Proxima Centauri is Sunlike in one surprising way: it has a regular cycle of starspots. Astronomers were surprised to detect a stellar activity cycle in Proxima Centauri because its interior is expected to be very different from the Sun's. Such stellar activity could affect the newly discovered Earth-sized planet called Proxima b.
+ Read More

Oct 4, 2016

Swift Cycle 13 GI Program

NASA received 155 valid proposals, requesting a total observing time of 15.5 Ms and $5.0M in funds for 1,309 targets. Considering PIs and Co-Is, more than 500 individual scientists responded to the Swift Cycle 13 call. The Swift Cycle 13 Peer Review will be held in December to evaluate the merits of submitted proposals. Results will be posted in January 2017.

Older News